【題目】如圖,Rt△ABC中,∠C=90°,AC=,tanB=.半徑為2的⊙C, 分別交AC、BC于點D、E,得到 .
(1)求證:AB為⊙C的切線;
(2)求圖中陰影部分的面積.
【答案】(1)證明見解析(2)5-π
【解析】分析:(1)過點C作CF⊥AB于點F。根據(jù)三角函數(shù)的計算公式和勾股定理可得BC、AB的長,根據(jù)三角形的面積公式可求得CF的長,因為CF的長等于圓的半徑長,利用切線的判定即可證明。(2)根據(jù)三角形的面積公式、扇形的面積公式以及陰影部分的面積等于△ABC的面積與扇形DCE的面積之差,即可求得陰影部分的面積.
詳解:(1)證明:過C作CF⊥AB于F,
∵在Rt△ABC中,∠C=90°,AC=,tanB==,
∴BC=2,
由勾股定理得:AB==5,
∵△ACB的面積S==,
∴CF==2,
∴CF為⊙C的半徑,
∵CF⊥AB,
∴AB為⊙C的切線;
(2)解:圖中陰影部分的面積=S△ACB﹣S扇形DCE=××2﹣=5﹣π.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華同學(xué)經(jīng)過調(diào)查,了解到某客車租賃公司有,兩種型號的客車,并得到了下表中的信息.
車型 | 型 | 型 |
座位 | 45座 | 60座 |
信息 | 每輛型客車一天的租金比型客車少100元 | |
5輛型客車和2輛型客車一天的租金為1600元 |
(1)求每輛型和型客車每天的租金各是多少元?
(2)小華所在學(xué)校準備組織七年級全體學(xué)生外出一天進行研學(xué)活動,小華同學(xué)設(shè)計了下面甲乙兩種租車方案:
方案甲:只租用型客車,但有一輛客車會空出30個座位.
方案乙:只租用型客車,剛好坐滿,且比方案甲少用兩輛客車.
求小華所在學(xué)校七年級學(xué)生的總?cè)藬?shù).
(3)如果從節(jié)省費用的角度考慮,是否還有其他租車方案?如果有,請直接寫出一種租車方案;如果沒有,請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知:AD為△ABC的中線,過B、C兩點分別作AD所在直線的垂線段BE和CF,E、F為垂足,過點E作EG∥AB交BC于點H,連結(jié)HF并延長交AB于點P。
(1)求證:DE=DF
(2)若;①求:的值;②求證:四邊形HGAP為平行四邊形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總?cè)丝趚(單位:人)的函數(shù)圖象如圖所示,則下列說法正確的是( )
A. 該村人均耕地面積隨總?cè)丝诘脑龆喽龆?/span>
B. 該村人均耕地面積y與總?cè)丝趚成正比例
C. 若該村人均耕地面積為2公頃,則總?cè)丝谟?00人
D. 當(dāng)該村總?cè)丝跒?0人時,人均耕地面積為1公頃
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為推動陽光體育活動的廣泛開展,引導(dǎo)學(xué)生積極參加體育鍛煉,學(xué)校準備購買一批運動鞋供學(xué)生借用.現(xiàn)從各年級隨機抽取了部分學(xué)生的鞋號,繪制了如下的統(tǒng)計圖①和圖②,請根據(jù)圖中提供的信息,解答下列問題:
(1)本次接受隨機抽樣調(diào)查的學(xué)生人數(shù)為 人,圖①中的m的值為 ,圖①中“38號”所在的扇形的圓心角度數(shù)為 ;
(2)本次調(diào)查獲取的樣本數(shù)據(jù)的眾數(shù)是 ,中位數(shù)是 ;
(3)根據(jù)樣本數(shù)據(jù),若學(xué)校計劃購買200雙運動鞋,建議購買36號運動鞋多少雙?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在數(shù)軸上點A,B,C表示的數(shù)分別為﹣2,0,6.點A與點B之間的距離表示為AB,點B與點C之間的距離表示為BC,點A與點C之間的距離表示為AC.
(1)AB= ,BC= ,AC= ;
(2)點A,B,C開始在數(shù)軸上運動,若點A以每秒1個單位長度的速度向左運動,同時點B和點C分別以每秒2個單位長度和5個單位長度的速度向右運動.
①設(shè)運動時間為t,請用含有t的算式分別表示出AB,BC,AC;
②在①的條件下,請問:BC﹣AB的值是否隨著運動時間t的變化而變化?若變化,請說明理由:若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y1=x+m的圖象與反比例函數(shù)的圖象交于A、B兩點.已知當(dāng)x>1時,y1>y2;當(dāng)0<x<1時,y1<y2.
(1)求一次函數(shù)的解析式;
(2)已知雙曲線在第一象限上有一點C到y(tǒng)軸的距離為3,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明、小英、小麗、小華的家位于同一直線上,已知小明家(A)與小英家(B)的距離為320米,小麗家(C)與小英家(B)的距離為480米,小華家(D)位于小明家(A)與小麗家(C)中間的位置.請你根據(jù)條件,畫出圖形,求出小明家(A)與小華家(D)的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com