【題目】某興趣小組為了測量大樓的高度,先沿著斜坡走了米到達(dá)坡頂點(diǎn)處,然后在點(diǎn)處測得大樓頂點(diǎn)的仰角為,已知斜坡的坡度為,點(diǎn)到大樓的距離為米,求大樓的高度.(參考數(shù)據(jù):,,)
【答案】大樓的高度為52米
【解析】
過點(diǎn)B作BE⊥AD于點(diǎn)E,作BF⊥CD于點(diǎn)F,在Rt△ABE中,根據(jù)坡度及勾股定理求出BE和AE的長,進(jìn)而由三個角是直角的四邊形是矩形判斷四邊形BEDF是矩形,得到BF和FD的長,再在Rt△BCF中,根據(jù)∠CBF的正切函數(shù)解直角三角形,得到CF的長,由CD=CF+FD得解.
解:如下圖,過點(diǎn)B作BE⊥AD于點(diǎn)E,作BF⊥CD于點(diǎn)F,
在Rt△ABE中,AB=52,
∵
∴tan∠BAE==,
∴AE=2.4BE,
又∵BE2+AE2=AB2,
∴BE2+(2.4BE)2=522,
解得:BE=20,
∴AE=2.4BE=48;
∵∠BED=∠D=∠BFD=90°,
∴四邊形BEDF是矩形,
∴FD=BE=20,BF=ED=AD-AE=72-48=24;
在Rt△BCF中,
tan∠CBF=,
即:tan53°==
∴CF=BF=32,
∴CD=CF+FD=32+20=52.
答:大樓的高度為52米.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩輛汽車沿同一公路從A地出發(fā)前往路程為100千米的B地,乙車比甲車晚出發(fā)15分鐘,行駛過程中所行駛的路程分別用y1、y2(千米)表示,它們與甲車行駛的時間x(分鐘)之間的函數(shù)關(guān)系如圖所示.
(1)分別求出y1、y2關(guān)于x的函數(shù)解析式并寫出定義域;
(2)乙車行駛多長時間追上甲車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣(k+1)x+k2+1=0有兩個實(shí)數(shù)根.
(1)求k的取值范圍;
(2)若方程的兩實(shí)數(shù)根分別為x1,x2,且x12+x22=6x1x2﹣15,求k的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某食品廠生產(chǎn)一種半成品食材,產(chǎn)量百千克與銷售價格元千克滿足函數(shù)關(guān)系式,從市場反饋的信息發(fā)現(xiàn),該半成品食材的市場需求量百千克與銷售價格元千克滿足一次函數(shù)關(guān)系,如下表:
銷售價格元千克 | 2 | 4 | 10 | |
市場需求量百千克 | 12 | 10 | 4 |
已知按物價部門規(guī)定銷售價格x不低于2元千克且不高于10元千克
求q與x的函數(shù)關(guān)系式;
當(dāng)產(chǎn)量小于或等于市場需求量時,這種半成品食材能全部售出,求此時x的取值范圍;
當(dāng)產(chǎn)量大于市場需求量時,只能售出符合市場需求量的半成品食材,剩余的食材由于保質(zhì)期短而只能廢棄若該半成品食材的成本是2元千克.
求廠家獲得的利潤百元與銷售價格x的函數(shù)關(guān)系式;
當(dāng)廠家獲得的利潤百元隨銷售價格x的上漲而增加時,直接寫出x的取值范圍利潤售價成本
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】新房裝修后,甲居民購買家居用品的清單如下表,因污水導(dǎo)致部分信息無法識別,根據(jù)下表解決問題:
家居用品名稱 | 單價(元) | 數(shù)量(個) | 金額(元) |
掛鐘 | 30 | 2 | 60 |
垃圾桶 | 15 | ||
塑料鞋架 | 40 | ||
藝術(shù)字畫 | 2 | 90 | |
電熱水壺 | 35 | 1 | |
合計 | 8 | 280 |
(1)直接寫出________,________;
(2)甲居民購買了垃圾桶,塑料鞋架各幾個?
(3)若甲居民再次購買藝術(shù)字畫和垃圾桶兩種家居用品,共花費(fèi)150元,若買的垃圾桶的數(shù)量比買字畫的數(shù)量多2個,則甲居民買字畫多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形的對角線,相交于點(diǎn),,.
圖1 圖2
(1)過點(diǎn)作交于點(diǎn),求證:;
(2)如圖2,將沿翻折得到.
①求證:;
②若,求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某體育用品商店為了解3月份的銷售情況,對本月各類商品的銷售情況進(jìn)行調(diào)查,并將調(diào)查的結(jié)果繪制成如下的兩幅不完整的統(tǒng)計圖.
(1)請根據(jù)圖中提供的信息,將條形圖補(bǔ)充完整;
(2)該商店準(zhǔn)備按3月份球類商品銷售量購進(jìn)球類商品,含籃球、足球、排球三種,預(yù)計恰好用完進(jìn)貨款共3600元,設(shè)購進(jìn)籃球x個,足球y個,三種球的進(jìn)價和售價如下表:
類別 | 籃球 | 足球 | 排球 |
進(jìn)價(單位:元/個) | 50 | 30 | 20 |
預(yù)售價(單位:元/個) | 70 | 45 | 25 |
求y與x之間滿足的函數(shù)關(guān)系式;
(3)該商店綜合考慮各種因素,預(yù)計每種球銷售超過60個后,這種球就會產(chǎn)生滯銷.
①假設(shè)所購進(jìn)籃球、足球、排球能全部售出,求出預(yù)估利潤P(元)與x(個)之間滿足的函數(shù)關(guān)系式;
②求出預(yù)估利潤的最大值,并寫出此時購進(jìn)三種球各多少個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】圖1是一輛吊車的實(shí)物圖,圖2是其工作示意圖,AC是可以伸縮的起重臂,其轉(zhuǎn)動點(diǎn)A離地面BD的高度AH為3.4m.當(dāng)起重臂AC長度為9m,張角∠HAC為118°時,求操作平臺C離地面的高度(結(jié)果保留小數(shù)點(diǎn)后一位:參考數(shù)據(jù):sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB,作圖.
步驟1:在OB上任取一點(diǎn)M,以點(diǎn)M為圓心,MO長為半徑畫半圓,分別交OA、OB于點(diǎn)P、Q;
步驟2:過點(diǎn)M作PQ的垂線交 于點(diǎn)C;
步驟3:畫射線OC.
則下列判斷:①=;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正確的個數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com