【題目】4月26日,2015黃河口(東營)國際馬拉松比賽拉開帷幕,中央電視臺體育頻道用直升機航拍技術(shù)全程直播.如圖,在直升機的鏡頭下,觀測馬拉松景觀大道A處的俯角為30°,B處的俯角為45°.如果此時直升機鏡頭C處的高度CD為200米,點A、D、B在同一直線上,則AB兩點的距離是米.

【答案】200 +200
【解析】解:由已知,得∠A=30°,∠B=45°,CD=200,
∵CD⊥AB于點D.
∴在Rt△ACD中,∠CDA=90°,tanA=
∴AD= =200 ,
在Rt△BCD中,∠CDB=90°,∠B=45°
∴DB=CD=200,
∴AB=AD+DB=200 +200,
故答案為:200 +200.
在兩個直角三角形中,都是知道已知角和對邊,根據(jù)正切函數(shù)求出鄰邊后,相加求和即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點C在線段AB上,AC=8 cm,CB=6 cm,點M、N分別是AC、BC的中點.

(1)求線段MN的長;
(2)若C為線段AB上任一點,滿足AC+CB=a cm,其它條件不變,你能猜想MN的長度嗎?并說明理由;
(3)若C在線段AB的延長線上,且滿足AC﹣BC=bcm,M、N分別為AC、BC的中點,你能猜想MN的長度嗎?請畫出圖形,寫出你的結(jié)論,并說明理由;
(4)你能用一句簡潔的話,描述你發(fā)現(xiàn)的結(jié)論嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點O,點E是BC上的一個動點,連接DE,交AC于點F.

(1)如圖①,當 時,求 的值;
(2)如圖②當DE平分∠CDB時,求證:AF= OA;
(3)如圖③,當點E是BC的中點時,過點F作FG⊥BC于點G,求證:CG= BG.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為半圓O的直徑,CD切⊙O于點E,AD、BC分別切⊙O于A、B兩點,AD與CD相交于D,BC與CD相交于C,連接OD、OC,對于下列結(jié)論:①OD2=DECD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CDOA;⑤∠DOC=90°;⑥若切點E在半圓上運動(A、B兩點除外),則線段AD與BC的積為定值.其中正確的個數(shù)是(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】AB為⊙O直徑,BC為⊙O切線,切點為B,CO平行于弦AD,作直線DC.
①求證:DC為⊙O切線;
②若ADOC=8,求⊙O半徑r.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角∠O的內(nèi)部有一滑動桿AB,當端點A沿直線AO向下滑動時,端點B會隨之自動地沿直線OB向左滑動,如果滑動桿從圖中AB處滑動到A′B′處,那么滑動桿的中點C所經(jīng)過的路徑是(
A.直線的一部分
B.圓的一部分
C.雙曲線的一部分
D.拋物線的一部分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線可以用y=﹣ x2+bx+c表示,且拋物線的點C到墻面OB的水平距離為3m時,到地面OA的距離為 m.
(1)求該拋物線的函數(shù)關(guān)系式,并計算出拱頂D到地面OA的距離;
(2)一輛貨運汽車載一長方體集裝箱后高為6m,寬為4m,如果隧道內(nèi)設(shè)雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】目前“自駕游”已成為人們出游的重要方式.“五一”節(jié),林老師駕轎車從舟山出發(fā),上高速公路途經(jīng)舟山跨海大橋和杭州灣跨海大橋到嘉興下高速,其間用了4.5小時;返回時平均速度提高了10千米/小時,比去時少用了半小時回到舟山.
(1)求舟山與嘉興兩地間的高速公路路程;
(2)兩座跨海大橋的長度及過橋費見下表:

大橋名稱

舟山跨海大橋

杭州灣跨海大橋

大橋長度

48千米

36千米

過橋費

100元

80元

我省交通部門規(guī)定:轎車的高速公路通行費y(元)的計算方法為:y=ax+b+5,其中a(元/千米)為高速公路里程費,x(千米)為高速公路里程(不包括跨海大橋長),b(元)為跨海大橋過橋費.若林老師從舟山到嘉興所花的高速公路通行費為295.4元,求轎車的高速公路里程費a.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:2sin30°+31+( ﹣1)0

查看答案和解析>>

同步練習冊答案