如圖(1)的矩形紙片折疊,B、C兩點恰好重合落在AD邊上的點P處,如圖(2),已知∠MPN=90º,PM=3,PN=4,那么矩形ABCD的周長為             
28.8

分析:根據(jù)勾股定理,得MN=5,進(jìn)而可得出BC的長,根據(jù)直角三角形的面積公式的兩種表示方法,可求出AB的長,根據(jù)矩形的周長=2(AB+BC)即可得出答案.
解答:解:由題意得,∠MPN=90°,PM=3cm,PN=4cm,
在RT△PMN中,MN2=PM2+PN2,
∴MN=5,BC=PM+PN+MN=3+4+5=12,
根據(jù)直角三角形的面積公式得,AB===2.4,
則矩形ABCD的周長=2(AB+BC)=28.8.
故答案為:28.8.
點評:本題考查了翻折變換的知識,本題的解答利用了折疊的性質(zhì),折疊前后圖形的形狀和大小不變,對應(yīng)邊和對應(yīng)角相等及勾股定理,另外要注意掌握直角三角形的面積的兩種表示方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)如圖,邊長為1的正方形被兩條與邊平行的線段分割成四個小矩形,交于點

(1)若,證明:
(2)若,證明:;
(3)若的周長為1,求矩形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖2,要使ABCD成為矩形,需添加的條件是
A.AB=BCB.AO=BOC.∠1=∠2D.ACBD

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(本題12分)如圖甲,在△ABC中,E是AC邊上的一點,
(1)在圖甲中,作出以BE為對角線的平行四邊形BDEF,使D、F分別在BC和AB邊上;
(2)改變點E的位置,則圖甲中所作的平行四邊形BDEF有沒有可能為菱形?若有,請在圖乙中作出點E的位置(用尺規(guī)作圖,并保留作圖痕跡);若沒有,請說明理由.
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,點C是線段AB上的一個動點,△ADC和△CEB是在AB同側(cè)的兩個等邊三形,DM,EN分別是△ADC和△CEB的高,點C在線段AB上沿著從點A向點B的方向移動(不與點A,B重合),連接DE,得到四邊形DMNE.這個四邊形的面積變化情況為(      ).
A.逐漸增大B.逐漸減小C.始終不變D.先增大后變小

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

平行四邊形一邊長為10,一條對角線長為6,則它的另一條對角線長b的取值范圍為    .  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,把一長方形紙片沿MN折疊后,點D,C分別落在D′,C′的位置.若∠AMD′=36°,則∠NFD′等于..........................................【 】
A.144°B.126°
C.108°D.72°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(8分).如圖,在矩形ABCD中,點E在邊AD上,EF⊥CE且與AB相交于點F,若DE=2,AD+DC=8,且CE=EF,求AE的長。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在Rt△ABC中,D、F分別是AB、AC的中點,延長BC到點E,使
求證:四邊形DEBF是等腰梯形

查看答案和解析>>

同步練習(xí)冊答案