【題目】如圖,已知是直角,平分平分

,求的度數(shù).

(2),求的度數(shù).

【答案】145°;(245°

【解析】

1)先求出∠AOC的度數(shù),再根據(jù)OE平分∠AOC,OF平分∠BOC.得出∠COE=75°,∠COF=30°,則∠EOF=COE-COF
2)由(1)得∠EOF恒等于∠AOC的一半減去∠BOC的一半.

解:(1)∵∠AOB是直角,∠BOC=60°

∴∠AOC=AOB+BOC=150°

OE平分∠AOCOF平分∠BOC
∴∠COE=AOC=75°,∠COF=BOC=30°
∴∠EOF=COE-COF=45°;
2)由(1)得:
EOF=AOC-BOC=(∠AOC-BOC=AOB=45°.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=ax+b(a≠0)的圖形與反比例函數(shù)y= (k≠0)的圖象交于第二、四象限內(nèi)的A、B兩點,與y軸交于C點,過點A作AH⊥y軸,垂足為H,OH=3,tan∠AOH= ,點B的坐標為(m,﹣2).

(1)求該反比例函數(shù)和一次函數(shù)的解析式.
(2)求△AOC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點滿足.將線段先向上平移2個單位,再向右平移1個單位后得到線段,并連接

1)請求出點和點的坐標;

2)點點出發(fā),以每秒1個單位的速度向上平移運動.設運動時間為秒,問:是否存在這樣的,使得四邊形的面積等于8?若存在,請求出的值:若不存在,請說明理由;

3)在(2)的條件下,點點出發(fā)的同時,點從點出發(fā),以每秒2個單位的速度向左平移運動,設射線軸于點.設運動時間為秒,問:的值是否會發(fā)生變化?若不變,請求出它的值:若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,分別是上的點,作,垂足分別是, 下面三個結論:①其中正確的是(

A.B.②③C.①②D.①②③

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,平面直角坐標系中,A11,1)、A2(﹣1,1)、A3(﹣1,﹣1)、A42,﹣1)、A52,2)、A6(﹣2,2)、A7(﹣2,﹣2)、A83,﹣2)、A933)、……、按此規(guī)律A2020的坐標為(  )

A.506,﹣505B.505,﹣504C.(﹣504,﹣504D.(﹣505,﹣505

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,EFAD,ADBC,CE平分∠BCF,∠DAC=115°,∠ACF=25°,則∠FEC=_____.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某電子科技公司開發(fā)一種新產(chǎn)品,公司對經(jīng)營的盈虧情況每月最后一天結算1次.在1~12月份中,公司前x個月累計獲得的總利潤y(萬元)與銷售時間x(月)之間滿足二次函數(shù)關系式y(tǒng)=a(x﹣h)2+k,二次函數(shù)y=a(x﹣h)2+k的一部分圖象如圖所示,點A為拋物線的頂點,且點A、B、C的橫坐標分別為4、10、12,點A、B的縱坐標分別為﹣16、20.

(1)試確定函數(shù)關系式y(tǒng)=a(x﹣h)2+k;
(2)分別求出前9個月公司累計獲得的利潤以及10月份一個月內(nèi)所獲得的利潤;
(3)在前12個月中,哪個月該公司一個月內(nèi)所獲得的利潤最多?最多利潤是多少萬元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖EFCD,∠1+∠2180°.

1)試說明GDCA;

2)若CD平分∠ACB,DG平分∠CDB,且∠A40°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在 ABCD中,∠DAB=60°,點E,F(xiàn)分別在CD,AB的延長線上,且AE=AD,CF=CB.

(1)求證:四邊形AFCE是平行四邊形.

(2)若去掉已知條件的“∠DAB=60°,上述的結論還成立嗎 ”若成立,請寫出證明過程;若不成立,請說明理由.

查看答案和解析>>

同步練習冊答案