如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點(diǎn).
(1)當(dāng)AB∥CD而AD與BC不平行時(shí),四邊形ABCD稱(chēng)為_(kāi)_______形,線(xiàn)段EF叫做其________,EF與AB+CD的數(shù)量關(guān)系為_(kāi)_______;
(2)當(dāng)AB與CD不平行,AD與BC也不平行時(shí),猜想EF與AB+CD的數(shù)量關(guān)系,并證明你的猜想.

解:(1)梯形,(1分)中位線(xiàn),(2分)
2EF=AB+CD;(4分)

(2)AB+CD>2EF.(7分)
證明如下:
連接AC,取AC的中點(diǎn)M,(8分)
連接EM、FM.
在△ACD中,
∵E為AD中點(diǎn),M為AC中點(diǎn),
則EM為△ACD的中位線(xiàn),∴EM=DC;(9分)
在△ABC中,∵F為BC中點(diǎn),M為AC中點(diǎn),則FM為△ABC的中位線(xiàn),∴FM=AB.(10分)
在△EFM中,∵EM+FM>EF,(11分)
DC+AB>EF,
兩邊同乘以2,得AB+CD>2EF.(12分)
分析:(1)類(lèi)比著三角形的中位線(xiàn)定理即可得到梯形的中位線(xiàn)定理.
(2)連接AC,取AC的中點(diǎn)M,連接EM、FM.在三角形EFM中利用三角形的中位線(xiàn)定理可以得到DC+AB>EF,從而證明結(jié)論.
點(diǎn)評(píng):本題考查了三角形的中位線(xiàn)定理的知識(shí),另外本題中還涉及到了類(lèi)比的數(shù)學(xué)思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長(zhǎng)線(xiàn)上,且DE=BF,連接FE分別交AB,CD于點(diǎn)H,G.
(1)觀察圖中有
2
對(duì)全等三角形;
(2)聰明的你如果還有時(shí)間,請(qǐng)?jiān)谏蠄D中連接AF,CE,你將發(fā)現(xiàn)圖中出現(xiàn)了更多的全等三角形.請(qǐng)?jiān)谙旅娴臋M線(xiàn)上再寫(xiě)出兩對(duì)與(1)不同的全等三角形(不用證明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,E為AB延長(zhǎng)線(xiàn)的上一點(diǎn),∠CBE=40°,則∠AOC等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點(diǎn).
(1)當(dāng)AB∥CD而AD與BC不平行時(shí),四邊形ABCD稱(chēng)為
 
形,線(xiàn)段EF叫做其
 
,EF與AB+CD的數(shù)量關(guān)系為
 
;
(2)當(dāng)AB與CD不平行,AD與BC也不平行時(shí),猜想EF與AB+CD的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四邊形ABCD是正方形,E、F是AB、BC的中點(diǎn),連接EC交DB、DF于G、H,則EG:GH:HC=
 
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:新課標(biāo) 讀想練同步測(cè)試 七年級(jí)數(shù)學(xué)(下) 北師大版 題型:044

如圖所示,四邊形AB-CD中,AB∥CD,P為BC上一點(diǎn),設(shè)∠CDP=α,∠CPD=β,試說(shuō)明,無(wú)論點(diǎn)P在BC上如何移動(dòng),總有α+β=∠B.

查看答案和解析>>

同步練習(xí)冊(cè)答案