如圖所示,四邊形AB-CD中,AB∥CD,P為BC上一點(diǎn),設(shè)∠CDP=α,∠CPD=β,試說(shuō)明,無(wú)論點(diǎn)P在BC上如何移動(dòng),總有α+β=∠B.

答案:
解析:

  解:如圖所示,過(guò)點(diǎn)P作PF∥AB,則∠CPF=∠B(兩直線平行,同位角相等).

  又∵CD∥AB(已知),∴PF∥DC(平行于同一條直線的兩直線平行)

  ∴∠FPD=∠PDC=α(兩直線平行,內(nèi)錯(cuò)角相等).

  ∴∠B=∠CPF=α+β.

  即無(wú)論點(diǎn)P在BC上如何移動(dòng),總有α+β=∠B.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

21、如圖所示,四邊形ABCD是平行四邊形,E,F(xiàn)分別在AD,CB的延長(zhǎng)線上,且DE=BF,連接FE分別交AB,CD于點(diǎn)H,G.
(1)觀察圖中有
2
對(duì)全等三角形;
(2)聰明的你如果還有時(shí)間,請(qǐng)?jiān)谏蠄D中連接AF,CE,你將發(fā)現(xiàn)圖中出現(xiàn)了更多的全等三角形.請(qǐng)?jiān)谙旅娴臋M線上再寫(xiě)出兩對(duì)與(1)不同的全等三角形(不用證明).1
△EDC≌△FBA
,2
△EAF≌△FCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

12、如圖所示,四邊形ABCD為⊙O的內(nèi)接四邊形,E為AB延長(zhǎng)線的上一點(diǎn),∠CBE=40°,則∠AOC等于( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,四邊形ABCD中,E、F分別為AD、BC的中點(diǎn).
(1)當(dāng)AB∥CD而AD與BC不平行時(shí),四邊形ABCD稱(chēng)為
 
形,線段EF叫做其
 
,EF與AB+CD的數(shù)量關(guān)系為
 
;
(2)當(dāng)AB與CD不平行,AD與BC也不平行時(shí),猜想EF與AB+CD的數(shù)量關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四邊形ABCD是正方形,E、F是AB、BC的中點(diǎn),連接EC交DB、DF于G、H,則EG:GH:HC=
 
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案