【題目】如圖,C是以點O為圓心,AB為直徑的半圓上一點,且COAB,在OC兩側(cè)分別作矩形OGHI和正方形ODEF,且點I,F(xiàn)OC上,點H,E在半圓上,可證:IG=FD.小云發(fā)現(xiàn)連接圖中已知點得到兩條線段,便可證明IG=FD.

請回答:小云所作的兩條線段分別是__________

證明IG=FD的依據(jù)是矩形的對角線相等,_____和等量代換.

【答案】OH OE 同圓的半徑相等

【解析】

連接OH、OE,由矩形OGHI和正方形ODEF的性質(zhì)得出IG=OH,OE=FD,由OH=OE,即可得出結論.

解:

連接OH、OE,如圖所示:

∵在矩形OGHI和正方形ODEF中,IG=OH,OE=FD,

∵OH=OE,

∴IG=FD;

故答案為:OH、OE,同圓的半徑相等.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,點B(0,3),點C(4,0)

(1)求線段BC的長.

(2)如圖1,點A(﹣1,0),D是線段BC上的一點,若△BAD∽△BCA時,求點D的坐標.

(3)如圖2,以BC為邊在第一象限內(nèi)作等邊△BCE,求點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)a<0)圖象與x軸的交點A、B的橫坐標分別為﹣3,1,與y軸交于點C,下面四個結論:

①16a﹣4b+c<0;②P(﹣5,y1),Qy2)是函數(shù)圖象上的兩點,則y1y2;③a=﹣c;④ABC是等腰三角形,則b=﹣.其中正確的有______(請將結論正確的序號全部填上)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O中,直徑CD弦AB于E,AMBC于M,交CD于N,連接AD.

(1)求證:AD=AN;

(2)若AB=8,ON=1,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在ABC中,∠A=90°,AB=AC,點DBC的中點.

(1)如圖①,若點E、F分別為AB、AC上的點,且DEDF,求證:BE=AF;

(2)若點E、F分別為AB、CA延長線上的點,且DEDF,那么BE=AF嗎?請利用圖②說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是線段BC上的一個動點,以AD為直徑作⊙O分別交AB、ACE、F,連結EF,則線段EF長度的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)已知⊙O的直徑為10cm,點A為⊙O外一定點,OA=12cm,點P為⊙O上一動點,求PA的最大值和最小值.

(2)如圖:=,D、E分別是半徑OAOB的中點.求證:CD=CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商店經(jīng)銷一種成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若按每千克50元銷售,一個月能售出500千克.若銷售價每漲1元,則月銷售量減少10千克.

(1)要使月銷售利潤達到最大,銷售單價應定為多少元?

(2)要使月銷售利潤不低于8000元,請結合圖象說明銷售單價應如何定?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在菱形 ABCD 中,對角線 AC、BD 相交于 O,如果菱形 ABCD 的周長為 20,BD=6,則下列結論中, 正確的是(  

A.AC=8B.AC=4

C.菱形 ABCD 的面積為 48D.菱形ABCD 的高為 9.6

查看答案和解析>>

同步練習冊答案