【題目】如圖,C是以點O為圓心,AB為直徑的半圓上一點,且CO⊥AB,在OC兩側(cè)分別作矩形OGHI和正方形ODEF,且點I,F(xiàn)在OC上,點H,E在半圓上,可證:IG=FD.小云發(fā)現(xiàn)連接圖中已知點得到兩條線段,便可證明IG=FD.
請回答:小云所作的兩條線段分別是_____和_____;
證明IG=FD的依據(jù)是矩形的對角線相等,_____和等量代換.
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,點B(0,3),點C(4,0)
(1)求線段BC的長.
(2)如圖1,點A(﹣1,0),D是線段BC上的一點,若△BAD∽△BCA時,求點D的坐標.
(3)如圖2,以BC為邊在第一象限內(nèi)作等邊△BCE,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)(a<0)圖象與x軸的交點A、B的橫坐標分別為﹣3,1,與y軸交于點C,下面四個結論:
①16a﹣4b+c<0;②若P(﹣5,y1),Q(,y2)是函數(shù)圖象上的兩點,則y1>y2;③a=﹣c;④若△ABC是等腰三角形,則b=﹣.其中正確的有______(請將結論正確的序號全部填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,⊙O中,直徑CD⊥弦AB于E,AM⊥BC于M,交CD于N,連接AD.
(1)求證:AD=AN;
(2)若AB=8,ON=1,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在△ABC中,∠A=90°,AB=AC,點D為BC的中點.
(1)如圖①,若點E、F分別為AB、AC上的點,且DE⊥DF,求證:BE=AF;
(2)若點E、F分別為AB、CA延長線上的點,且DE⊥DF,那么BE=AF嗎?請利用圖②說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是線段BC上的一個動點,以AD為直徑作⊙O分別交AB、AC于E、F,連結EF,則線段EF長度的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)已知⊙O的直徑為10cm,點A為⊙O外一定點,OA=12cm,點P為⊙O上一動點,求PA的最大值和最小值.
(2)如圖:=,D、E分別是半徑OA和OB的中點.求證:CD=CE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店經(jīng)銷一種成本為每千克40元的水產(chǎn)品,據(jù)市場分析,若按每千克50元銷售,一個月能售出500千克.若銷售價每漲1元,則月銷售量減少10千克.
(1)要使月銷售利潤達到最大,銷售單價應定為多少元?
(2)要使月銷售利潤不低于8000元,請結合圖象說明銷售單價應如何定?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在菱形 ABCD 中,對角線 AC、BD 相交于 O,如果菱形 ABCD 的周長為 20,BD=6,則下列結論中, 正確的是( )
A.AC=8B.AC=4
C.菱形 ABCD 的面積為 48D.菱形ABCD 的高為 9.6
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com