【題目】在如圖所示的七邊形ABCDEFG中,∠1、∠2、∠3、∠4 四個角的外角和為180°,∠5 的外角為60°,BP、DP 分別平分∠ABC、∠CDE,則∠BPD 的度數(shù)是( 。
A. 130° B. 120° C. 110° D. 100°
【答案】B
【解析】分析:根據(jù)鄰補角互補得出,∠1+∠2+∠3+∠4=4×180°﹣180°=540°,∠5=120°,利用多邊形內(nèi)角和定理求出∠ABC+∠CDE=240°,根據(jù)角平分線定義得出∠CBP+∠CDP=120°,然后根據(jù)四邊形內(nèi)角和定理求出∠BPD 的度數(shù).
詳解:∵∠1、∠2、∠3、∠4 四個角的外角和為180°,∠5 的外角為60°,∴∠1+∠2+∠3+∠4=4×180°﹣180°=540°,∠5=120°,∴∠ABC+∠CDE=(7﹣2)×180°﹣540°﹣120°=240°.
∵BP、DP 分別平分∠ABC、∠CDE,∴∠CBP+∠CDP=(∠ABC+∠CDE)=120°,∴∠BPD=360°﹣∠5﹣(∠CBP+∠CDP)=360°﹣120°﹣120°=120°.
故選B.
科目:初中數(shù)學 來源: 題型:
【題目】已知數(shù)3.3 ,-2 ,0 , ,-3.5 ;
(1) 比較這些數(shù)的絕對值的大小,并將這些數(shù)的絕對值用“>”號連接起來;
(2) 比較這些數(shù)的相反數(shù)的大小,并將這些數(shù)的相反數(shù)用“<”號連接起來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,直線y=kx+b(k,b為常數(shù))分別與x軸、y軸交于點A(﹣4,0),B(0,3),拋物線y=﹣x2+4x+1與y軸交于點C,點E在拋物線y=﹣x2+4x+1的對稱軸上移動,點F在直線AB上移動,CE+EF的最小值是( 。
A.2B.4C.2.5D.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在數(shù)軸上點A表示的有理數(shù)為-6,點B表示的有理數(shù)為4,點P從點A出發(fā),以每秒2個單位長度的速度在數(shù)軸上向點B運動,當點P到達點B后立即返回,仍然以每秒2個單位長度的速度運動至點A停止.設運動時間為t(單位:秒).
(1)求t=1時點P表示的有理數(shù);
(2)求點P與點B重合時的t值;
(3)在點P沿數(shù)軸由點A到點B再回到點A的運動過程中,求點P與點A的距離(用含t的代數(shù)式表示);
(4)當點P表示的有理數(shù)與原點的距離是2個單位長度時,直接寫出所有滿足條件的t值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對非負實數(shù)x“四舍五入”到個位的值記為< x >,即已知n為正整數(shù),如果n-≤x<n+,那么< x >=n.例如:< 0 >=< 0.48 >=0,< 0.64 >=< 1.493 >=1,< 2 >=2,< 3.5 >=< 4.12 >=4,…則滿足方程< x >=的非負實數(shù)x的值為____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(觀察探索)用“<”、“>”或“=”完成以下填空,并觀察兩邊算式,探索規(guī)律:
(猜想證明)請用一個含字母a、b的式子表示上以規(guī)律,并證明結(jié)論的正確性;
(應用拓展)比較代數(shù)式m2-3mn+1與mn-4n2的大小,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com