已知關(guān)于x的二次函數(shù)y=x2-2mx+m2+m的圖象與關(guān)于x的函數(shù)y=kx+1的圖象交于兩點(diǎn)A(x1,y1)、B(x2,y2);(x1<x2
(1)當(dāng)k=1,m=0,1時(shí),求AB的長;
(2)當(dāng)k=1,m為任何值時(shí),猜想AB的長是否不變?并證明你的猜想.
(3)當(dāng)m=0,無論k為何值時(shí),猜想△AOB的形狀.證明你的猜想.
(平面內(nèi)兩點(diǎn)間的距離公式).
【答案】分析:(1)先將k=1,m=0分別代入,得出二次函數(shù)的解析式為y=x2,直線的解析式為y=x+1,聯(lián)立,得x2-x-1=0,根據(jù)一元二次方程根與系數(shù)的關(guān)系得到x1+x2=1,x1•x2=-1,過點(diǎn)A、B分別作x軸、y軸的平行線,兩線交于點(diǎn)C,證明△ABC是等腰直角三角形,根據(jù)勾股定理得出AB=AC,根據(jù)兩點(diǎn)間距離公式及完全平方公式求出AB=;同理,當(dāng)k=1,m=1時(shí),AB=;
(2)當(dāng)k=1,m為任何值時(shí),聯(lián)立,得x2-(2m+1)x+m2+m-1=0,根據(jù)一元二次方程根與系數(shù)的關(guān)系得到x1+x2=2m+1,x1•x2=m2+m-1,同(1)可求出AB=;
(3)當(dāng)m=0,k為任意常數(shù)時(shí),分三種情況討論:①當(dāng)k=0時(shí),由,得A(-1,1),B(1,1),顯然△AOB為直角三角形;②當(dāng)k=1時(shí),聯(lián)立,得x2-x-1=0,根據(jù)一元二次方程根與系數(shù)的關(guān)系得到x1+x2=1,x1•x2=-1,同(1)求出AB=,則AB2=10,運(yùn)用兩點(diǎn)間的距離公式及完全平方公式求出OA2+OB2=10,由勾股定理的逆定理判定△AOB為直角三角形;③當(dāng)k為任意實(shí)數(shù)時(shí),聯(lián)立,得x2-kx-1=0,根據(jù)一元二次方程根與系數(shù)的關(guān)系得到x1+x2=k,x1•x2=-1,根據(jù)兩點(diǎn)間距離公式及完全平方公式求出AB2=k4+5k2+4,OA2+OB2═k4+5k2+4,由勾股定理的逆定理判定△AOB為直角三角形.
解答:解:(1)當(dāng)k=1,m=0時(shí),如圖.
得x2-x-1=0,
∴x1+x2=1,x1•x2=-1,
過點(diǎn)A、B分別作x軸、y軸的平行線,兩線交于點(diǎn)C.
∵直線AB的解析式為y=x+1,
∴∠BAC=45°,△ABC是等腰直角三角形,
∴AB=AC=|x2-x1|==;
同理,當(dāng)k=1,m=1時(shí),AB=;

(2)猜想:當(dāng)k=1,m為任何值時(shí),AB的長不變,即AB=.理由如下:
,得x2-(2m+1)x+m2+m-1=0,
∴x1+x2=2m+1,x1•x2=m2+m-1,
∴AB=AC=|x2-x1|==

(3)當(dāng)m=0,k為任意常數(shù)時(shí),△AOB為直角三角形,理由如下:
①當(dāng)k=0時(shí),則函數(shù)的圖象為直線y=1,
,得A(-1,1),B(1,1),
顯然△AOB為直角三角形;
②當(dāng)k=1時(shí),則一次函數(shù)為直線y=x+1,
,得x2-x-1=0,
∴x1+x2=1,x1•x2=-1,
∴AB=AC=|x2-x1|==,
∴AB2=10,
∵OA2+OB2=x12+y12+x22+y22
=x12+x22+y12+y22
=x12+x22+(x1+1)2+(x2+1)2
=x12+x22+(x12+2x1+1)+(x22+2x2+1)
=2(x12+x22)+2(x1+x2)+2
=2(1+2)+2×1+2
=10,
∴AB2=OA2+OB2,
∴△AOB是直角三角形;
③當(dāng)k為任意實(shí)數(shù),△AOB仍為直角三角形.
,得x2-kx-1=0,
∴x1+x2=k,x1•x2=-1,
∴AB2=(x1-x22+(y1-y22
=(x1-x22+(kx1-kx22
=(1+k2)(x1-x22
=(1+k2)[(x1+x22-4x1•x2]
=(1+k2)(4+k2
=k4+5k2+4,
∵OA2+OB2=x12+y12+x22+y22
=x12+x22+y12+y22
=x12+x22+(kx1+1)2+(kx2+1)2
=x12+x22+(k2x12+2kx1+1)+(k2x22+2kx2+1)
=(1+k2)(x12+x22)+2k(x1+x2)+2
=(1+k2)(k2+2)+2k•k+2
=k4+5k2+4,
∴AB2=OA2+OB2,
∴△AOB為直角三角形.
點(diǎn)評:本題考查了二次函數(shù)的綜合題型,其中涉及到的知識(shí)點(diǎn)有一元二次方程根與系數(shù)的關(guān)系,平面內(nèi)兩點(diǎn)間的距離公式,完全平方公式,勾股定理的逆定理,有一定難度.本題對式子的變形能力要求較高,體現(xiàn)了由特殊到一般的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的二次函數(shù)y=ax2+bx+c(a>0)的圖象經(jīng)過點(diǎn)C(0,1),且與x軸交于不同的兩點(diǎn)A、B,點(diǎn)A的坐標(biāo)是(1,0)
(1)求c的值;
(2)求a的取值范圍;
(3)該二次函數(shù)的圖象與直線y=1交于C、D兩點(diǎn),設(shè)A、B、C、D四點(diǎn)構(gòu)成的四邊形的對角線相交于點(diǎn)P,記△PCD的面積為S1,△PAB的面積為S2,當(dāng)0<a<1時(shí),求證:S1-S2為常數(shù),并求出該常數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的二次函數(shù)y1和y2,其中y1的圖象開口向下,與x軸交于點(diǎn)A(-2,0)和點(diǎn)B(4,0),對稱軸平行于y軸,其頂點(diǎn)M與點(diǎn)B的距離為5,而y2=-
4
9
x2-
16
9
x+
2
9

(I)求二次函數(shù)y1的解析式;
(II)把y2化為y2=a(x-h)2+k的形式;
(III)將y1的圖象經(jīng)過怎樣的平移能得到y(tǒng)2的圖象.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•河?xùn)|區(qū)二模)已知關(guān)于x的二次函數(shù)同時(shí)滿足下列兩個(gè)條件:①函數(shù)的圖象過原點(diǎn);②頂點(diǎn)在第一象限,你認(rèn)為符合要求的二次函數(shù)的解析式可以是:
y=-x2+x(答案不唯一)
y=-x2+x(答案不唯一)
(寫出一個(gè)即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的二次函數(shù)y=mx2-(2m-6)x+m-2.
(1)若該函數(shù)的圖象與y軸的交點(diǎn)坐標(biāo)是(0,3),求m的值;
(2)若該函數(shù)圖象的對稱軸是直線x=2,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知關(guān)于x的二次函數(shù)y=x2-(2m-1)x+m2
(1)m滿足什么條件時(shí),二次函數(shù)的圖象與x軸有兩個(gè)交點(diǎn)?
(2)設(shè)二次函數(shù)的圖象與x軸的交點(diǎn)為A(x1,0),B(x2,0),且
x
2
1
+
x
2
2
=5
,它的頂點(diǎn)為M,求頂點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案