【題目】如圖,四邊形OABC是邊長(zhǎng)為4的正方形,點(diǎn)P為OA邊上任意一點(diǎn)(與點(diǎn)O、A不重合),連接CP,過(guò)點(diǎn)P作PM⊥CP交AB于點(diǎn)D,且PM=CP,過(guò)點(diǎn)M作MN∥OA,交BO于點(diǎn)N,連接ND、BM,設(shè)OP=t.

(1)求點(diǎn)M的坐標(biāo)(用含t的代數(shù)式表示);
(2)試判斷線(xiàn)段MN的長(zhǎng)度是否隨點(diǎn)P的位置的變化而改變?并說(shuō)明理由.
(3)當(dāng)t為何值時(shí),四邊形BNDM的面積最。

【答案】
(1)

解:作ME⊥x軸于E,如圖1所示:

則∠MEP=90°,ME∥AB,

∴∠MPE+∠PME=90°,

∵四邊形OABC是正方形,

∴∠POC=90°,OA=OC=AB=BC=4,∠BOA=45°,

∵PM⊥CP,

∴∠CPM=90°,

∴∠MPE+∠CPO=90°,

∴∠PME=∠CPO,

在△MPE和△PCO中,

,

∴△MPE≌△PCO(AAS),

∴ME=PO=t,EP=OC=4,

∴OE=t+4,

∴點(diǎn)M的坐標(biāo)為:(t+4,t).


(2)

解:線(xiàn)段MN的長(zhǎng)度不發(fā)生改變;理由如下:

連接AM,如圖2所示:

∵M(jìn)N∥OA,ME∥AB,∠MEA=90°,

∴四邊形AEMF是矩形,

又∵EP=OC=OA,

∴AE=PO=t=ME,

∴四邊形AEMF是正方形,

∴∠MAE=45°=∠BOA,

∴AM∥OB,

∴四邊形OAMN是平行四邊形,

∴MN=OA=4;


(3)

解:∵M(jìn)E∥AB,

∴△PAD∽△PEM,

,

∴AD=t2+t,

∴BD=AB﹣AD=4﹣(t2+t)=t2﹣t+4,

∵M(jìn)N∥OA,AB⊥OA,

∴MN⊥AB,

∴四邊形BNDM的面積S=MNBD=×4(t2﹣t+4)=(t﹣2)2+6,

∴S是t的二次函數(shù),

>0,

∴S有最小值,

當(dāng)t=2時(shí),S的值最;

∴當(dāng)t=2時(shí),四邊形BNDM的面積最。


【解析】(1)作ME⊥x軸于E,則∠MEP=90°,先證出∠PME=∠CPO,再證明△MPE≌△PCO,得出ME=PO=t,EP=OC=4,求出OE,即可得出點(diǎn)M的坐標(biāo);
(2)連接AM,先證明四邊形AEMF是正方形,得出∠MAE=45°=∠BOA,AM∥OB,證出四邊形OAMN是平行四邊形,即可得出MN=OA=4;
(3)先證明△PAD∽△PEM,得出比例式,得出AD,求出BD,求出四邊形BNDM的面積S是關(guān)于t的二次函數(shù),即可得出結(jié)果.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,將△ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到△BDE,連接DC交AB于點(diǎn)F,則△ACF與△BDF的周長(zhǎng)之和為 cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABCD中,DE⊥AB,BF⊥CD,垂足分別為E,F(xiàn).

(1)求證:△ADE≌△CBF;
(2)求證:四邊形BFDE為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,E是BC的中點(diǎn),以AC為直徑的⊙O與AB邊交于點(diǎn)D,連接DE

(1)求證:△ABC∽△CBD;
(2)求證:直線(xiàn)DE是⊙O的切線(xiàn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(3,2)、B(3,5)、C(1,2).

(1)在平面直角坐標(biāo)系中畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1;
(2)把△ABC繞點(diǎn)A順時(shí)針旋轉(zhuǎn)一定的角度,得圖中的△AB2C2 , 點(diǎn)C2在AB上.
①旋轉(zhuǎn)角為多少度?
②寫(xiě)出點(diǎn)B2的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,圖2,分別是吊車(chē)在吊一物品時(shí)的實(shí)物圖與示意圖,已知吊車(chē)底盤(pán)CD的高度為2米,支架BC的長(zhǎng)為4米,且與地面成30°角,吊繩AB與支架BC的夾角為80°,吊臂AC與地面成70°角,求吊車(chē)的吊臂頂端A點(diǎn)距地面的高度是多少米?(精確到0.1米)(參考數(shù)據(jù):sin10°=cos80°=0.17,cos10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】901班的全體同學(xué)根據(jù)自己的興趣愛(ài)好參加了六個(gè)學(xué)生社團(tuán)(每個(gè)學(xué)生必須參加且只參加一個(gè)),為了了解學(xué)生參加社團(tuán)的情況,學(xué)生會(huì)對(duì)該班參加各個(gè)社團(tuán)的人數(shù)進(jìn)行了統(tǒng)計(jì),繪制成了如圖不完整的扇形統(tǒng)計(jì)圖,已知參加“讀書(shū)社”的學(xué)生有15人,請(qǐng)解答下列問(wèn)題:

(1)該班的學(xué)生共有 人;
(2)若該班參加“吉他社”與“街舞社”的人數(shù)相同,請(qǐng)你計(jì)算,“吉他社”對(duì)應(yīng)扇形的圓心角的度數(shù);
(3)901班學(xué)生甲、乙、丙是“愛(ài)心社”的優(yōu)秀社員,現(xiàn)要從這三名學(xué)生中隨機(jī)選兩名學(xué)生參加“社區(qū)義工”活動(dòng),請(qǐng)你用畫(huà)樹(shù)狀圖或列表的方法求出恰好選中甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,是一臺(tái)自動(dòng)測(cè)溫記錄儀的圖象,它反映了我市冬季某天氣溫T隨時(shí)間t變化而變化的關(guān)系,觀察圖象得到下列信息,其中錯(cuò)誤的是( 。

A.凌晨4時(shí)氣溫最低為﹣3℃
B.14時(shí)氣溫最高為8℃
C.從0時(shí)至14時(shí),氣溫隨時(shí)間增長(zhǎng)而上升
D.從14時(shí)至24時(shí),氣溫隨時(shí)間增長(zhǎng)而下降

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)(﹣2)2+ ﹣(﹣ 0;
(2)(2x+1)(2x﹣1)﹣4(x+1)2

查看答案和解析>>

同步練習(xí)冊(cè)答案