【題目】CD是經(jīng)過∠BCA定點(diǎn)C的一條直線,CA=CB,E、F分別是直線CD上兩點(diǎn),且∠BEC=∠CFA=∠β.
(1)若直線CD經(jīng)過∠BCA內(nèi)部,且E、F在射線CD上,
①若∠BCA=90°,∠β=90°,例如左邊圖,則BE CF,EF |BE - AF|
(填“>”,“<”,“=”);
②若0°<∠BCA<180°,且∠β+∠BCA=180°,例如中間圖,①中的兩個(gè)結(jié)論還成立嗎?并說明理由;
(2)如右邊圖,若直線CD經(jīng)過∠BCA外部,且∠β=∠BCA,請(qǐng)直接寫出線段EF、BE、AF的數(shù)量關(guān)系(不需要證明).
【答案】(1)①=,= ②兩結(jié)論依然成立,證明見解析 (2)EF=BE+AF
【解析】
(1)①本題考查全等三角形的判定,可利用AAS定理進(jìn)行解答;
②本題考查全等三角形判定,可通過三角形內(nèi)角和定理運(yùn)用AAS解答.
(2)本題考查全等三角形的判定,運(yùn)用三角形內(nèi)角和以及平角定義,通過AAS解答.
(1)①∵∠BCA=90°,∠β=90°
∴∠FCA+∠BCF=90°,∠FCA+∠CAF=90°
∴∠BCF=∠CAF
又∵∠BEC=∠CFA,CA=CB
∴△BEC△CFA(AAS)
∴BE=CF,CE=AF
∴
②在△FCA中,∠CFA+∠FCA+∠CAF=180°
又∵∠BEC=∠CFA=∠β,∠β+∠BCA=180°
∴∠FCA+∠CAF=∠BCA
∵∠BCA=∠BCE+∠FCA
∴∠CAF=∠BCE
∵CA=CB
∴△BEC△CFA(AAS)
∴BE=CF,CE=AF
∴
(2)在△BEC中,∠B+∠BEC+∠BCE=180°
又∵∠BEC=∠CFA=∠β,∠BCE+∠BCA+∠ACF=180°,∠β=∠BCA
∴∠B=∠ACF
∵CA=CB
∴△BEC△CFA(AAS)
∴BE=CF,CE=AF
EF=EC+CF=AF+BE
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=x+1的圖象交x軸于點(diǎn)E、交反比例函數(shù) 的圖象于點(diǎn)F(點(diǎn)F在第一象限),過線段EF上異于E,F(xiàn)的動(dòng)點(diǎn)A作x軸的平行線交 的圖象于點(diǎn)B,過點(diǎn)A,B作x軸的垂線段,垂足分別是點(diǎn)D,C,則矩形ABCD的面積最大值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次數(shù)學(xué)課上,張老師出示了一個(gè)題目:“如圖,ABCD的對(duì)角線相交于點(diǎn)O,過點(diǎn)O作EF垂直于BD交AB,CD分別于點(diǎn)F,E,連接DF,請(qǐng)根據(jù)上述條件,寫出一個(gè)正確結(jié)論”其中四位同學(xué)寫出的結(jié)論如下:
小青:;小何:四邊形DFBE是正方形;
小夏:;小雨:.
這四位同學(xué)寫出的結(jié)論中不正確的是
A. 小青 B. 小何 C. 小夏 D. 小雨
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“陽光體育”活動(dòng)時(shí)間,小英、小麗、小敏、小潔四位同學(xué)進(jìn)行一次羽毛球單打比賽,要從中選出兩位同學(xué)打第一場比賽.
(1)若已確定小英打第一場,再從其余三位同學(xué)中隨機(jī)選取一位,求恰好選中小麗同學(xué)的概率;
(2)用畫樹狀圖或列表的方法,求恰好選中小敏、小潔兩位同學(xué)進(jìn)行比賽的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知三角形的一銳角α(45°<α<90°)的正弦和余弦分別是方程(m+5)x2﹣(2m﹣5)x+12=0的兩根,求:
(1)m的值;
(2)α的正弦值和余弦值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在等邊三角形ABC中,點(diǎn)D是BC邊上的一點(diǎn),且BD=2CD,P是AD上的一點(diǎn),∠CPD=∠ABC,求證:BP⊥AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分8分)
如圖,點(diǎn)E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF與DE交于點(diǎn)O.
(1)求證:AB=DC;
(2)試判斷△OEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某建設(shè)工地一個(gè)工程有大量的沙石需要運(yùn)輸.建設(shè)公司車隊(duì)有載重量為8噸和10噸的卡車共12輛,全部車輛一次能運(yùn)輸110噸沙石
(1)求建設(shè)公司車隊(duì)載重量為8噸和10噸的卡車各有多少輛?
(2)隨著工程的進(jìn)展,車隊(duì)需要一次運(yùn)輸沙石超過160噸,為了完成任務(wù),準(zhǔn)備新增購這兩種卡車共6輛,車隊(duì)最多新購買載重量為8噸的卡車多少輛?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com