【題目】如圖,拋物線y=ax2+2ax+1與x軸僅有一個公共點A,經(jīng)過點A的直線交該拋物線于點B,交y軸于點C,且點C是線段AB的中點.
(1)求這條拋物線對應(yīng)的函數(shù)解析式;
(2)求直線AB對應(yīng)的函數(shù)解析式.
【答案】(1)y=x2+2x+1;(2)y=2x+2.
【解析】
試題分析:(1)拋物線與x軸僅有1個交點可知△=0時,即可得到4a2﹣4a=0,解方程即可求得a,即可得到拋物線解析式;(2)先求得A的坐標(biāo),已知點C是線段AB的中點,可判定點A與點B的橫坐標(biāo)互為相反數(shù),再確定B點坐標(biāo),最后利用待定系數(shù)法求直線AB的解析式.
試題解析:
(1)∵拋物線y=ax2+2ax+1與x軸僅有一個公共點A,
∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,
∴拋物線解析式為y=x2+2x+1;
(2)∵y=(x+1)2,
∴頂點A的坐標(biāo)為(﹣1,0),
∵點C是線段AB的中點,
即點A與點B關(guān)于C點對稱,
∴B點的橫坐標(biāo)為1,
當(dāng)x=1時,y=x2+2x+1=1+2+1=4,則B(1,4),
設(shè)直線AB的解析式為y=kx+b,
把A(﹣1,0),B(1,4)代入得,解得,
∴直線AB的解析式為y=2x+2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,ABCD中,AB=2,以點A為圓心,AB為半徑的圓交邊BC于點E,連接DE、AC、AE.
(1)求證:△AED≌△DCA;
(2)若DE平分∠ADC且與⊙A相切于點E,求圖中陰影部分(扇形)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)經(jīng)過A(﹣3,0)、B(5,0)、C(0,5)三點,O為坐標(biāo)原點
(1)求此拋物線的解析式;
(2)若把拋物線y=ax2+bx+c(a≠0)向下平移個單位長度,再向右平移n(n>0)個單位長度得到新拋物線,若新拋物線的頂點M在△ABC內(nèi),求n的取值范圍;
(3)設(shè)點P在y軸上,且滿足∠OPA+∠OCA=∠CBA,求CP的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式計算正確的是( )
A.2x4﹣x2=x2
B.(2x2)4=8x8
C.x2x3=x6
D.(﹣x)6÷(﹣x)2=x4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,∠ABC=60°,AB=8cm,D是AB的中點.現(xiàn)將△BCD沿BA方向平移1cm,得到△EFG,F(xiàn)G交AC于H,F(xiàn)E交AC于M點.
(1)求證:AG=GH;
(2)求四邊形GHME的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,BA⊥AD,BC=DC,BE⊥CD于點E.
(1)求證:△ABD≌△EBD;
(2)過點E作EF∥DA,交BD于點F,連接AF.求證:四邊形AFED是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題7分)如圖,在Rt△ABC中,∠ACB=90°,E為AC上一點,且AE=BC,過點A作AD⊥CA,垂足為A,且AD=AC,AB、DE交于點F.
(1)判斷線段AB與DE的數(shù)量關(guān)系和位置關(guān)系,并說明理由;
(2)連接BD、BE,若設(shè)BC=a,AC=b,AB=c,請利用四邊形ADBE的面積證明勾股定理.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com