如圖,B為雙曲線上一點(diǎn),直線AB平行于y軸交直線y=x于點(diǎn)A,若OB2-AB2=4,則k=   
【答案】分析:延長AB交x軸于點(diǎn)C,則AC⊥OC,AC=OC.設(shè)A(a,a),則C(a,0),B(a,).運(yùn)用勾股定理及平方差公式將OB2-AB2變形為BC(BC+AC+AB),再用含a,k的代數(shù)式表示,根據(jù)OB2-AB2=4,從而求出k的值.
解答:解:延長AB交x軸于點(diǎn)C,則AC⊥OC,AC=OC.
設(shè)A(a,a),則C(a,0),B(a,).
∵OB2-AB2=4,OB2=BC2+OC2,
∴BC2+OC2-AB2=4,
∵AC=OC,
∴BC2+AC2-AB2=4,
∴BC2+(AC+AB)(AC-AB)=4,
∴BC2+BC(AC+AB)=4,
∴BC(BC+AC+AB)=4,
+a+a-)=4,
∴2k=4,
k=2.
故答案為:2.
點(diǎn)評:本題考查反比例函數(shù)、正比例函數(shù)的圖象性質(zhì),代數(shù)式的恒等變形等知識,利用形數(shù)結(jié)合解決此類問題,是非常有效的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知雙曲線y=
kx
(k>0)與直線y=k′x交于A,B兩點(diǎn),點(diǎn)P在第一象限.
精英家教網(wǎng)
(1)若點(diǎn)A的坐標(biāo)為(3,2),則k的值為
 
,k′的值為
 
;點(diǎn)B的坐標(biāo)為(
 
);
(2)若點(diǎn)A(m,m-1),P(m-2,m+3)都在雙曲線的圖象上,試求出m的值;
(3)如圖,在(2)小題的條件下:
①過原點(diǎn)O和點(diǎn)P作一條直線,交雙曲線于另一點(diǎn)Q,試證明四邊形APBQ是平行四邊形;
②如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),以點(diǎn)P,A,M,N為頂點(diǎn)的四邊形是平行四邊形,試求出點(diǎn)M和點(diǎn)N的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,過點(diǎn)B(4,0)的直線與直線y=x相交于一象限的點(diǎn)A,反比例函數(shù)的圖象過點(diǎn)A,若∠OAB=90°;
①求直線AB和雙曲線的解析式;
精英家教網(wǎng)
②G為雙曲線上一點(diǎn),若SOBG=2,求點(diǎn)G的坐標(biāo);
③在第一象限內(nèi),M是雙曲線上A點(diǎn)右側(cè)(不包括A點(diǎn))的一動點(diǎn),連OM交AB于點(diǎn)E,取OB中點(diǎn)C,作∠ECF=90°交AO于點(diǎn)F,當(dāng)M在雙曲線上運(yùn)動時
OF2+BE22EF2
的值是否變化?若不變化請求出它的值,寫出求解過程;若變化,說明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

閱讀理解:對于任意正實(shí)數(shù)a、b,∵(
a
-
b
)2
≥0,∴a-2
ab
+b
≥0,∴a+b≥2
ab
,只有當(dāng)a=b時,等號成立.
結(jié)論:在a+b≥2
ab
(a、b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p
,只有當(dāng)a=b時,a+b有最小值2
p
.   
根據(jù)上述內(nèi)容,回答下列問題:
(1)若m>0,只有當(dāng)m=
 
時,m+
1
m
有最小值
 
;
若m>0,只有當(dāng)m=
 
時,2m+
8
m
有最小值
 

(2)如圖,已知直線L1y=
1
2
x+1
與x軸交于點(diǎn)A,過點(diǎn)A的另一直線L2與雙曲線y=
-8
x
(x>0)
相交于點(diǎn)B(2,m),求直線L2的解析式.
(3)在(2)的條件下,若點(diǎn)C為雙曲線上任意一點(diǎn),作CD∥y軸交直線L1于點(diǎn)D,試求當(dāng)線段CD最短精英家教網(wǎng)時,點(diǎn)A、B、C、D圍成的四邊形面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•海滄區(qū)一模)如圖,已知雙曲線y=
k-3
x
(k為常數(shù))與過原點(diǎn)的直線相交于A、B兩點(diǎn),第一象限內(nèi)的點(diǎn)M(點(diǎn)M在A的上方)是雙曲線y=
k-3
x
上的一動點(diǎn),設(shè)直線AM、BM分別與y軸交于P、Q兩點(diǎn).
(1)若直線AB的解析式為y=
1
6
x
,A點(diǎn)的坐標(biāo)為(a,1),
①求a、k的值;
②當(dāng)AM=2MP時,求點(diǎn)P的坐標(biāo).
(2)若AM=m•MP,BM=n•MQ,試問m-n的值是否為定值?若是求出它的值;若不是,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2005•東城區(qū)一模)如圖,A為雙曲線y=
k
x
上的一點(diǎn),直角三角形ABO的面積為2,則k的值為( 。

查看答案和解析>>

同步練習(xí)冊答案