【題目】如圖1,拋物線(xiàn)yax2+bx+2x軸交于A,B兩點(diǎn),與y軸交于C點(diǎn),A5,0)且AB3OCPx軸上方拋物線(xiàn)上的動(dòng)點(diǎn)(P不與A,B重合),過(guò)點(diǎn)PPQx軸于點(diǎn)Q,作PMx軸平行,交拋物線(xiàn)另一點(diǎn)M,以PQPM為鄰邊作矩形PQNM

1)求拋物線(xiàn)的函數(shù)表達(dá)式;

2)設(shè)矩形PQNM的周長(zhǎng)為C,求C的取值范圍;

3)如圖2,當(dāng)P點(diǎn)與C點(diǎn)重合時(shí),連接對(duì)角線(xiàn)PN,取PN上一點(diǎn)D(不與PN重合),連接DM,作DEDM,交x軸于點(diǎn)E

試求的值;

試探求是否存在點(diǎn)D,使△DEN是等腰三角形?若存在,請(qǐng)直接寫(xiě)出符合條件的點(diǎn)D坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

【答案】1yx2+x+2;(2C的取值范圍是0C;(3①2,存在點(diǎn)D,使△DEN是等腰三角形,符合條件的點(diǎn)D坐標(biāo)為(,)與(,2).

【解析】

1)先求出點(diǎn)C坐標(biāo),由AB3OC和點(diǎn)A坐標(biāo)得到點(diǎn)B坐標(biāo),用待定系數(shù)法即求出拋物線(xiàn)解析式.

2)設(shè)點(diǎn)P坐標(biāo)(p,),即能用p表示PQ;由PMx軸可知P、M關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸對(duì)稱(chēng),即P、M到對(duì)稱(chēng)軸的距離相等,故能用p表示M的橫坐標(biāo),進(jìn)而表示PM的長(zhǎng);由矩形PQNM周長(zhǎng)等于PQPM的和的2倍,即用含p的二次式表示周長(zhǎng)C,配方即得到其最值.再根據(jù)p的取值范圍,即能求C的取值范圍.

3)①由P點(diǎn)與C點(diǎn)重合即求得P、M、N的坐標(biāo);由DEDM,過(guò)Dx軸垂線(xiàn)FG,即構(gòu)造出MDG∽△DEF,所以.

②對(duì)點(diǎn)E在點(diǎn)N左側(cè)和右側(cè)進(jìn)行分類(lèi)討論:若點(diǎn)E在點(diǎn)N左側(cè),先說(shuō)明∠DEN為鈍角,所以DEN為等腰三角形時(shí)只有DEEN一種情況.設(shè)點(diǎn)D橫坐標(biāo)為d,求直線(xiàn)PN解析式即得到D的縱坐標(biāo),進(jìn)而能用d表示所有線(xiàn)段的長(zhǎng),再在RtDEF中利用勾股定理列方程,即求出d的值;若點(diǎn)E在點(diǎn)N右側(cè),說(shuō)明∠DNE為鈍角,得DNEN,解題思路與第一種情況相同,即求出d的值.

1)當(dāng)x0時(shí),yax2+bx+22

C0,2),OC2

AB3OC6

A50),即OA5

OBABOA1

B(﹣1,0

AB坐標(biāo)代入拋物線(xiàn)解析式得:

解得:

∴拋物線(xiàn)的函數(shù)表達(dá)式為

2)設(shè)Pp,

PQx軸于Q,PMx

PQ,點(diǎn)PM關(guān)于拋物線(xiàn)對(duì)稱(chēng)軸對(duì)稱(chēng)

∵拋物線(xiàn)對(duì)稱(chēng)軸:直線(xiàn)

xM2+2p)=4p

PM=(4p)﹣p42p

C2PM+PQ)=

∵﹣1p5

∴當(dāng)p時(shí),C有最大值為

C的取值范圍是0≤C

3)①過(guò)點(diǎn)DGFx軸于點(diǎn)F,交PMG

∴∠DFE=∠DGM90°DFy

∴四邊形MNFG是矩形,DFN∽△PON

P點(diǎn)與C點(diǎn)重合,P、M關(guān)于直線(xiàn)x2對(duì)

P0,2),M4,2),N4,0

GFMNOP2PMON4

DEDM

∴∠MDE90°

∴∠MDG+EDF=∠EDF+DEF90°

∴∠MDG=∠DEF

∴△MDG∽△DEF

②存在點(diǎn)D,使DEN是等腰三角形

設(shè)直線(xiàn)PN解析式為ymx+n

解得:

∴直線(xiàn)PN解析式為y=﹣x+2

設(shè)Dd,﹣d+2)(0d4

OFdDF=﹣d+2

FNONOF4d,DGFGDF2﹣(﹣d+2)=d

∵△MDG∽△DEF

EFDGd

①當(dāng)點(diǎn)E在點(diǎn)N左側(cè)時(shí),如圖1

∵四邊形DENM中,∠MDE=∠MNE90°,∠DMN90°

∴∠DEN360°﹣∠MDE﹣∠MNE﹣∠DMN180°﹣∠DMN90°

∴當(dāng)DEN是等腰三角形時(shí),DEENFNEF,

RtDEF中,DF2+EF2DE2

解得:d14(舍去),

∴點(diǎn)D坐標(biāo)為

②當(dāng)點(diǎn)E在點(diǎn)N右側(cè)時(shí),如圖2,∠DNE90°

∴當(dāng)DEN是等腰三角形時(shí),DNENEFFN,

RtDFN中,DF2+FN2DN2

解得:,(舍去)

∴點(diǎn)D坐標(biāo)為

綜上所述,符合條件的點(diǎn)D坐標(biāo)為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,RtABC的三個(gè)頂點(diǎn)分別是A(﹣4,1),B(﹣13),C(﹣1,1

1)將△ABC以點(diǎn)C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫(huà)出旋轉(zhuǎn)后對(duì)應(yīng)的△A1B1C1;平移△ABC,若A對(duì)應(yīng)的點(diǎn)A2坐標(biāo)為(﹣4,﹣5),畫(huà)出△A2B2C2;

2)若△A1B1C1繞某一點(diǎn)旋轉(zhuǎn)可以得到△A2B2C2,直接寫(xiě)出旋轉(zhuǎn)中心坐標(biāo)   

3)在x軸上有一點(diǎn)P使得PA+PB的值最小,直接寫(xiě)出點(diǎn)P的坐標(biāo)   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線(xiàn),經(jīng)過(guò)點(diǎn)、,過(guò)點(diǎn)軸的平行線(xiàn)交拋物線(xiàn)于另一點(diǎn)

(1)求拋物線(xiàn)的表達(dá)式及其頂點(diǎn)坐標(biāo);

(2)如圖,點(diǎn)是第一象限中上方拋物線(xiàn)上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作于點(diǎn),作軸于點(diǎn),交于點(diǎn),在點(diǎn)運(yùn)動(dòng)的過(guò)程中,的周長(zhǎng)是否存在最大值?若存在,求出這個(gè)最大值;若不存在,請(qǐng)說(shuō)明理由;

(3)如圖,連接,在軸上取一點(diǎn),使相似,請(qǐng)求出符合要求的點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某居民小區(qū)有一朝向?yàn)檎戏较虻木用駱,該居民樓的一樓是?/span>5米的小區(qū)超市,超市以上是居民住房.在該樓的前面15米處要蓋一棟高20米的新樓.當(dāng)冬季正午的陽(yáng)光與水平線(xiàn)的夾角為32°時(shí).

1)問(wèn)超市以上的居民住房采光是否有影響,為什么?

2)若要使超市采光不受影響,兩樓應(yīng)相距多少米?(結(jié)果保留整數(shù),參考數(shù)據(jù):sin32°≈,cos32°≈,tan32°≈.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為美化校園,計(jì)劃對(duì)面積為400平方米的花壇區(qū)域進(jìn)行綠化,安排甲工程隊(duì)或乙工程隊(duì)完成.已知甲隊(duì)平均每天完成綠化的面積是乙隊(duì)的2倍,并且甲隊(duì)比乙隊(duì)能少用4天完成任務(wù),求甲、乙兩工程隊(duì)平均每天能完成綠化的面積分別是多少平方米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)經(jīng)營(yíng)A種品牌的玩具,購(gòu)進(jìn)時(shí)的單價(jià)是30元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是40元時(shí),銷(xiāo)售量是600件,而銷(xiāo)售單價(jià)每漲1元,就會(huì)少售出10件玩具.

1)不妨設(shè)該種品牌玩具的銷(xiāo)售單價(jià)為x元(x40),請(qǐng)用含x的代數(shù)式表示該玩具的銷(xiāo)售量.

2)若玩具廠(chǎng)規(guī)定該品牌玩具銷(xiāo)售單價(jià)不低于44元,且商場(chǎng)要完成不少于450件的銷(xiāo)售任務(wù),求商場(chǎng)銷(xiāo)售該品牌玩具獲得的最大利潤(rùn)是多少?

(3)該商場(chǎng)計(jì)劃將(2)中所得的利潤(rùn)的一部分資金采購(gòu)一批B種玩具并轉(zhuǎn)手出售,根據(jù)市場(chǎng)調(diào)查并準(zhǔn)備兩種方案,方案①:如果月初出售,可獲利15%,并可用本和利再投資C種玩具,到月末又可獲利10%;方案②:如果只到月末出售可直接獲利30%,但要另支付倉(cāng)庫(kù)保管費(fèi)350元,請(qǐng)問(wèn)商場(chǎng)如何使用這筆資金,采用哪種方案獲利較多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】特產(chǎn)店銷(xiāo)售一種水果,其進(jìn)價(jià)每千克40元,按60元出售,平均每天可售100千克,后來(lái)經(jīng)過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn),單價(jià)每降低2元,則平均每天可增加20千克銷(xiāo)量.

1)若該專(zhuān)賣(mài)店銷(xiāo)售這種核桃要想平均每天獲利2240元,每千克水果應(yīng)降多少元?

2)若該專(zhuān)賣(mài)店銷(xiāo)售這種核桃要想平均每天獲利最大,每千克水果應(yīng)降多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙峰縣教育局要求各學(xué)校加強(qiáng)對(duì)學(xué)生的安全教育,全縣各中小學(xué)校引起高度重視,小剛就本班同學(xué)對(duì)安全知識(shí)的了解程度進(jìn)行了一次調(diào)查統(tǒng)計(jì).他將統(tǒng)計(jì)結(jié)果分為三類(lèi),A:熟悉;B:了解較多;C:一般了解。圖和圖是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖中提供的信息解答以下問(wèn)題:

(1)求小剛所在的班級(jí)共有多少名學(xué)生;

(2)在條形圖中,將表示“一般了解”的部分補(bǔ)充完整‘’

(3)在扇形統(tǒng)計(jì)圖中,計(jì)算“了解較多”部分所對(duì)應(yīng)的扇形圓心角的度數(shù);

(4)如果小剛所在年級(jí)共1000名同學(xué),請(qǐng)你估算全年級(jí)對(duì)安全知識(shí)“了解較多”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD是邊長(zhǎng)為1的正方形,E,FBD所在直線(xiàn)上的兩點(diǎn),若AE=,∠EAF=135°,則下列結(jié)論正確的是(   )

A. DE=1B. tanAFO=C. AF=D. 四邊形AFCE的面積為

查看答案和解析>>

同步練習(xí)冊(cè)答案