【題目】,次函數(shù) y=kx+b與反數(shù) y=x0Am,6B3,n點(diǎn)

1求一次函數(shù)的解析式;

2AOB的面積

【答案】1y=-2x+8;28

【解析】

試題分析:1先把點(diǎn)Am,6,B3,n分別代入y=x0可求出m、n的值,確定A點(diǎn)坐標(biāo)為1,6B點(diǎn)坐標(biāo)為3,2,然后利用待定系數(shù)法求一次函數(shù)的解析式;

2分別過(guò)點(diǎn)A、BAEx軸,BCx軸,垂足分別是E、C點(diǎn)直線ABx軸于D點(diǎn)SAOB=SAOD-SBOD,由三角形的面積公式可以直接求得結(jié)果

試題解析:1把點(diǎn)m,6,B3n分別代入y=x0 m=1,n=2

A點(diǎn)坐標(biāo)為1,6B點(diǎn)坐標(biāo)為3,2

A1,6B3,2分別代入y=kx+b ,解得,

一次函數(shù)解析式為y=-2x+8

分別過(guò)點(diǎn)A、BAEx軸,BCx軸,垂足分別是E、C點(diǎn)直線ABx軸于D點(diǎn)

令-2x+8=0,得x=4,即D4,0).

A1,6,B32,

AE=6,BC=2,

SAOB=SAOD-SBOD=×4×6-×4×2=8

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若直線y=﹣2x+b經(jīng)過(guò)點(diǎn)(3,5),則關(guān)于x的不等式﹣2x+b<5的解集是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,某建筑物AC頂部有一旗桿AB,且點(diǎn)A,B,C在同一條直線上,小明在地面D處觀測(cè)旗桿頂端B的仰角為30°,然后他正對(duì)建筑物的方向前進(jìn)了20米到達(dá)地面的E處,又測(cè)得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結(jié)果精確到0.1米).參考數(shù)據(jù):≈1.73,≈1.41.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在某次海上軍事學(xué)習(xí)期間,我軍為確保OBC海域內(nèi)的安全,特派遣三艘軍艦分別在O、B、C處監(jiān)控OBC海域,在雷達(dá)顯示圖上,軍艦B在軍艦O的正東方向80海里處,軍艦C在軍艦B的正北方向60海里處,三艘軍艦上裝載有相同的探測(cè)雷達(dá),雷達(dá)的有效探測(cè)范圍是半徑為r的圓形區(qū)域.(只考慮在海平面上的探測(cè))

(1)若三艘軍艦要對(duì)OBC海域進(jìn)行無(wú)盲點(diǎn)監(jiān)控,則雷達(dá)的有效探測(cè)半徑r至少為多少海里?

(2)現(xiàn)有一艘敵艦A從東部接近OBC海域,在某一時(shí)刻軍艦B測(cè)得A位于北偏東60°方向上,同時(shí)軍艦C測(cè)得A位于南偏東30°方向上,求此時(shí)敵艦A離OBC海域的最短距離為多少海里?

(3)若敵艦A沿最短距離的路線以20海里/小時(shí)的速度靠近OBC海域,我軍軍艦B沿北偏東15°的方向行進(jìn)攔截,問B軍艦速度至少為多少才能在此方向上攔截到敵艦A?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一元二次方程x2=x的解為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中正確的是(

A. 已知a,b,c是三角形的三邊,則a2+b2=c2

B. 在直角三角形中,兩邊的平方和等于第三邊的平方

C. RtABC中,∠,所以a2+b2=c2

D. RtABC中,∠,所以a2+b2=c2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的4×3網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)均為1,正方形頂點(diǎn)叫網(wǎng)格格點(diǎn),連結(jié)兩個(gè)網(wǎng)格格點(diǎn)的線段叫網(wǎng)格線段.
(1)請(qǐng)你畫一個(gè)邊長(zhǎng)為的菱形,并求其面積;
(2)若a是圖中能用網(wǎng)格線段表示的最大無(wú)理數(shù),b是圖中能用網(wǎng)格線段表示的最小無(wú)理數(shù),求a2-2b2的平方根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC=12厘米,∠B=C,BC=8厘米,點(diǎn)DAB的中點(diǎn).如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).若點(diǎn)Q的運(yùn)動(dòng)速度為v厘米/秒,則當(dāng)BPDCQP全等時(shí),v的值為________厘米/秒.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC是等腰直角三角形,BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時(shí)BD=CF,BDCF成立.

(1)當(dāng)ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ(0°θ<90°)時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.

(2)當(dāng)ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)DB交CF于點(diǎn)H.

求證:BDCF;

當(dāng)AB=2,AD=3時(shí),求線段DH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案