【題目】定義:有兩個相鄰內(nèi)角互余的四邊形稱為鄰余四邊形,這兩個角的夾邊稱為鄰余線.

1)如圖1,在△ABC中,ABAC,AD是△ABC的角平分線,E,F分別是BDAD上的點.求證:四邊形ABEF是鄰余四邊形.

2)如圖2,在(1)的條件下,取EF中點M,連結(jié)DM并延長交AB于點Q,延長EFAC于點N.若NAC的中點,DE2BE,QB3,求鄰余線AB的長.

【答案】1)詳見解析;(210

【解析】

1)由等腰三角形的三線合一定理先證ADBC,再證∠DAB+DBA90°,由鄰余四邊形定義即可判定;

2)由等腰三角形的三線合一定理先證BDCD,推出CE5BE,再證明DBQ∽△ECN,推出,即可求出NC,AC,AB的長度.

解:(1)∵ABAC,ADABC的角平分線,

ADBC,

∴∠ADB90°,

∴∠DAB+DBA90°

∴∠FAB與∠EBA互余,

∴四邊形ABEF是鄰余四邊形;

2)∵ABAC,ADABC的角平分線,

BDCD

DE2BE,

BDCD3BE,

CECD+DE5BE,

∵∠EDF90°,點MEF的中點,

DMME,

∴∠MDE=∠MED,

ABAC,

∴∠B=∠C

∴△DBQ∽△ECN,

,

QB3,

NC5,

ANCN

AC2CN10,

ABAC10

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知函數(shù) y1 kx ax a 的圖象與 x 軸交于 A、B 兩點(點 A 在點 B 的左側(cè)),已知函數(shù)y2 kx bx b 的圖象與 x 軸交于 C、D 兩點(點 C 在點 D 的左側(cè)),其中 k 0, a b

(1)求證:函數(shù) y1 y2 的圖象交點落在一條定直線上;

(2) AB=CD,求 a、bk 滿足的關(guān)系式;

(3)是否存在函數(shù) y1 y2 ,使得 BC 為線段 AD 的三等分點?若存在,求的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,AB是⊙O的直徑,BC是弦,∠B=30°,延長BAD,使∠BDC=30°

(1)求證:DC是⊙O的切線;

(2)AB=2,求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】每天鍛煉一小時,健康生活一輩子,學校準備從小明和小亮2人中隨機選拔一人當陽光大課間領(lǐng)操員,體育老師設(shè)計的游戲規(guī)則是:將四張撲克牌(方塊2、黑桃4、黑桃5、梅花5)的牌面如圖1,撲克牌洗勻后,如圖2背面朝上放置在桌面上.小亮和小明兩人各抽取一張撲克牌,兩張牌面數(shù)字之和為奇數(shù)時,小亮當選;否則小明當選.

1)請用樹狀圖或列表法求出所有可能的結(jié)果;

2)請問這個游戲規(guī)則公平嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,RtABC中,∠BAC=90°,AB=3,AC=6,點D,E分別是邊BC,AC上的動點,則DA+DE的最小值為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】12分)如圖1,點O是正方形ABCD兩對角線的交點,分別延長OD到點G,OC到點E,使OG=2OD,OE=2OC,然后以OG、OE為鄰邊作正方形OEFG,連接AGDE

1)求證:DE⊥AG;

2)正方形ABCD固定,將正方形OEFG繞點O逆時針旋轉(zhuǎn)α角(α360°)得到正方形OE′F′G′,如圖2

在旋轉(zhuǎn)過程中,當∠OAG′是直角時,求α的度數(shù);

若正方形ABCD的邊長為1,在旋轉(zhuǎn)過程中,求AF′長的最大值和此時α的度數(shù),直接寫出結(jié)果不必說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:關(guān)于三角函數(shù)還有如下的公式:

sin(α±β)=sinαcosβ±cosαsinβ

tan(α±β)=

利用這些公式可以將一些不是特殊角的三角函數(shù)轉(zhuǎn)化為特殊角的三角函數(shù)來求值.

例:tan75°=tan(45°+30°)===

根據(jù)以上閱讀材料,請選擇適當?shù)墓浇獯鹣旅鎲栴}

(1)計算:sin15°;

(2)某校在開展愛國主義教育活動中,來到烈士紀念碑前緬懷和紀念為國捐軀的紅軍戰(zhàn)士.李三同學想用所學知識來測量如圖紀念碑的高度.已知李三站在離紀念碑底7米的C處,在D點測得紀念碑碑頂?shù)难鼋菫?5°,DC為米,請你幫助李三求出紀念碑的高度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】四邊形ABCD是平行四邊形,對角線AC平分∠DAB,AC與BD相交于點O,DE⊥AB于E點.(1)求證:四邊形ABCD是菱形;

(2)若AC=8,BD=6,求DE的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖①,ABCADE均是等腰直角三角形,直角邊AC、AD在同一條直線上,點GH分別是斜邊DE、BC的中點,點FBE的中點,連接GF、GH

1)猜想GFGH的數(shù)量關(guān)系,請直接寫出結(jié)論;

2)現(xiàn)將圖①中的ADE繞著點A逆時針旋轉(zhuǎn)αα90°),得到圖②,請判斷(1)中的結(jié)論是否成立?若成立,請證明;若不成立,請說明理由;

3)若AD2,AC4,將圖①中的ADE繞著點A逆時針旋轉(zhuǎn)一周,直接寫出GH的最大值和最小值,并寫出取得最值時旋轉(zhuǎn)角的度數(shù).

查看答案和解析>>

同步練習冊答案