【題目】小瑩和小博士下棋,小瑩執(zhí)圓子,小博士執(zhí)方子.如圖,棋盤中心方子的位置用(﹣1,0)表示,右下角方子的位置用(0,﹣1)表示.小瑩將第4枚圓子放入棋盤后,所有棋子構(gòu)成一個軸對稱圖形.他放的位置是( )
A.(﹣2,1)
B.(﹣1,1)
C.(1,﹣2)
D.(﹣1,﹣2)
【答案】B
【解析】解:棋盤中心方子的位置用(﹣1,0)表示,則這點(diǎn)所在的橫線是x軸,右下角方子的位置用(0,﹣1),則這點(diǎn)所在的縱線是y軸,則當(dāng)放的位置是(﹣1,1)時構(gòu)成軸對稱圖形.
故選B.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用坐標(biāo)確定位置和坐標(biāo)與圖形變化-對稱的相關(guān)知識可以得到問題的答案,需要掌握對于平面內(nèi)任一點(diǎn)P,過P分別向x軸,y軸作垂線,垂足分別在x軸,y軸上,對應(yīng)的數(shù)a,b分別叫點(diǎn)P的橫坐標(biāo)和縱坐標(biāo);關(guān)于x軸對稱的點(diǎn)的特征:兩個點(diǎn)關(guān)于x軸對稱時,它們的坐標(biāo)中,x相等,y的符號相反,即點(diǎn)P(x,y)關(guān)于x軸的對稱點(diǎn)為P’(x,-y);關(guān)于y軸對稱的點(diǎn)的特征:兩個點(diǎn)關(guān)于y軸對稱時,它們的坐標(biāo)中,y相等,x的符號相反,即點(diǎn)P(x,y)關(guān)于y軸的對稱點(diǎn)為P’(-x,y).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口A在觀測站O的正東方向,OA=4km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時從觀測站O處測得該船位于北偏東60°的方向,則該船航行的距離(即AB的長)為( )
A.4km
B.2 km
C.2 km
D.( +1)km
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC、△CDE均為等邊三角形,連接BD、AE交于點(diǎn)O,BC與AE交于點(diǎn)P.求證:∠AOB=60°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點(diǎn)的坐標(biāo)分別為A(﹣3,4),B(﹣5,2),C(﹣2,1).
(1)畫出△ABC關(guān)于y軸對稱圖形△A1B1C1;
(2)畫出將△ABC繞原點(diǎn)O逆時針方向旋轉(zhuǎn)90°得到的△A2B2C2;
(3)求(2)中線段OA掃過的圖形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)P在CA的延長線上,∠CAD=45°.
(Ⅰ)若AB=4,求 的長;
(Ⅱ)若 = ,AD=AP,求證:PD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,自左至右,第1個圖由1個正六邊形、6個正方形和6個等邊三角形組成;第2個圖由2個正六邊形、11個正方形和10個等邊三角形組成;第3個圖由3個正六邊形、16個正方形和14個等邊三角形組成;…按照此規(guī)律,第n個圖中正方形和等邊三角形的個數(shù)之和為個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】邊長為6的等邊△ABC中,點(diǎn)D、E分別在AC、BC邊上,DE∥AB,EC=2
(1)如圖1,將△DEC沿射線方向平移,得到△D′E′C′,邊D′E′與AC的交點(diǎn)為M,邊C′D′與∠ACC′的角平分線交于點(diǎn)N,當(dāng)CC′多大時,四邊形MCND′為菱形?并說明理由.
(2)如圖2,將△DEC繞點(diǎn)C旋轉(zhuǎn)∠α(0°<α<360°),得到△D′E′C,連接AD′、BE′.邊D′E′的中點(diǎn)為P.
①在旋轉(zhuǎn)過程中,AD′和BE′有怎樣的數(shù)量關(guān)系?并說明理由;
②連接AP,當(dāng)AP最大時,求AD′的值.(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足a1=3,an+1= .
(1)證明:數(shù)列 是等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)令bn=a1a2…an , 求數(shù)列 的前n項(xiàng)和Sn .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com