【題目】如圖,△ABC, ∠ABC、∠ACB的三等分線交于點(diǎn)E、D,若∠BFC=132°,∠BGC=118°,則∠A的度數(shù)為( )

A.65°
B.66°
C.70°
D.78°

【答案】C
【解析】解:∵∠ABC、∠ACB的三等分線交于點(diǎn)E、D,
∴∠FBC=2∠DBC,∠GCB=2∠DCB,
∵∠BFC=132°,∠BGC=118°,
∴∠FBC+∠DCB=180°-∠BFC=180°-132°=48°,
∠DBC+∠GCB=180°-∠BGC=180°-118°=62°,

2∠DBC+∠DCB=48°①

DBC+2∠DCB=62°②

由①+②可得:3(∠DBC+∠DCB)=110°,
∴∠ABC+∠ACB=3(∠DBC+∠DCB)=110°,
∴∠A=180°-(∠ABC+∠ACB)=180°-110°=70°,
故選C.
【考點(diǎn)精析】本題主要考查了三角形的內(nèi)角和外角的相關(guān)知識(shí)點(diǎn),需要掌握三角形的三個(gè)內(nèi)角中,只可能有一個(gè)內(nèi)角是直角或鈍角;直角三角形的兩個(gè)銳角互余;三角形的一個(gè)外角等于和它不相鄰的兩個(gè)內(nèi)角的和;三角形的一個(gè)外角大于任何一個(gè)和它不相鄰的內(nèi)角才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說(shuō)明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列投影一定不會(huì)改變△ABC的形狀和大小的是(
A.中心投影
B.平行投影
C.正投影
D.當(dāng)△ABC平行投影面時(shí)的平行投影

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:

x

﹣1

0

1

2

3

4

y

10

5

2

1

2

5

若A(m,y1),B(m﹣2,y2)兩點(diǎn)都在該函數(shù)的圖象上,當(dāng)m=時(shí),y1=y2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,若點(diǎn)P(m,m﹣n)與點(diǎn)Q(2,3)關(guān)于原點(diǎn)對(duì)稱,則點(diǎn)M(m,n)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織了一次八年級(jí)350名學(xué)生參加的“漢字聽(tīng)寫(xiě)”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績(jī)(成績(jī)x取整數(shù),總分100分)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:

請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:

(1)a= b= ;

(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;

(3)這次比賽成績(jī)的中位數(shù)會(huì)落在 分?jǐn)?shù)段;

(4)若成績(jī)?cè)?0分以上(包括90分)的為“優(yōu)”等,則該年級(jí)參加這次比賽的350名學(xué)生中成績(jī)“優(yōu)”等的約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC, ∠ABC、∠ACB的三等分線交于點(diǎn)E、D,若∠BFC=132°,∠BGC=118°,則∠A的度數(shù)為( )

A.65°
B.66°
C.70°
D.78°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,點(diǎn)P是Rt△ABC斜邊AB上一動(dòng)點(diǎn)(不與A、B重合),分別過(guò)A、B向直線CP作垂線,垂足分別為E、F、Q為斜邊AB的中點(diǎn).
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)Q重合時(shí),AE與BF的位置關(guān)系,QE與QF的數(shù)量關(guān)系.
(2)如圖2,當(dāng)點(diǎn)P在線段AB上不與點(diǎn)Q重合時(shí),試判斷QE與QF的數(shù)量關(guān)系,并給予證明;
(3)如圖3,當(dāng)點(diǎn)P在線段BA(或AB)的延長(zhǎng)線上時(shí),此時(shí)(2)中的結(jié)論是否成立?請(qǐng)畫(huà)出圖形并給予證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在實(shí)數(shù)|﹣3|,﹣2,0,π中,最小的數(shù)是( 。

A. |﹣3| B. ﹣2 C. 0 D. π

查看答案和解析>>

同步練習(xí)冊(cè)答案