【題目】如圖,在Rt△ABC中,∠ACB=90°,D為AB的中點,以CD為直徑的⊙O交BC于點E,過點E作EF⊥AB于點F.
(1)判斷EF所在直線與⊙O的位置關(guān)系,并說明理由.
(2)若∠B=40°,⊙O的半徑為6,求的長.(結(jié)果保留π)
【答案】(1)EF與⊙O相切,理由見解析;(2)
【解析】
(1)如圖,連接OE,根據(jù)直角三角形的性質(zhì)得到CD=BD,得到∠DBC=∠DCB,根據(jù)等腰三角形的性質(zhì)得到∠OEC=∠OCE,得到∠OEC=∠DBC,推出∠OEF=90°,于是得到結(jié)論;
(2)根據(jù)弧長公式計算.
(1)EF所在直線與⊙O相切.
如圖,連結(jié)OE.
∵∠ACB=90°,D為AB的中點,
∴BD=CD.
∴∠B=∠DCB.
∵OE=OC,
∴∠OEC=∠OCE.
∴∠OEC=∠B.
∴OE∥DB.
∴∠OEF=∠BFE.
∵EF⊥AB,
∴∠BFE=90°.
∴∠OEF=90°.
∵點E在⊙O上,∴EF與⊙O相切.
(2)∵∠OCE+∠OEC+∠EOC=180°,
∠OCE=∠OEC=∠B=40°,
∴∠EOC=180°﹣∠OCE﹣∠OEC=180°﹣40°﹣40°=100°.
∴的長.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某企業(yè)為響應(yīng)國家教育扶貧的號召,決定對某鄉(xiāng)鎮(zhèn)全體貧困初、高中學(xué)生進行資助,初中學(xué)生每月資助200元,高中學(xué)生每月資助300元.已知該鄉(xiāng)受資助的初中學(xué)生人數(shù)是受資助的高中學(xué)生人數(shù)的2倍,且該企業(yè)在2018年下半年7﹣12月這6個月資助學(xué)生共支出10.5萬元.
(1)問該鄉(xiāng)鎮(zhèn)分別有多少名初中學(xué)生和高中學(xué)生獲得了資助?
(2)2018年7﹣12月期間,受資助的初、高中學(xué)生中,分別有30%和40%的學(xué)生被評為優(yōu)秀學(xué)生,從而獲得了該鄉(xiāng)鎮(zhèn)政府的公開表揚.同時,提供資助的企業(yè)為了激發(fā)更多受資助學(xué)生的進取心和學(xué)習(xí)熱情,決定對2019年上半年1﹣6月被評為優(yōu)秀學(xué)生的初中學(xué)生每人每月增加a%的資助,對被評為優(yōu)秀學(xué)生的高中學(xué)生每人每月增加2a%的資助.在此獎勵政策的鼓勵下,2019年1﹣6月被評為優(yōu)秀學(xué)生的初、高中學(xué)生分別比2018年7﹣12月的人數(shù)增加了3a%、a%.這樣,2019年上半年評為優(yōu)秀學(xué)生的初、高中學(xué)生所獲得的資助總金額一個月就達到了10800元,求a的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠BAD=∠BCD=90°,AC平分∠BAD,AC=7,AD=3,將四邊形ABCD沿直線l無滑動翻滾一周,則對角線BD的中點O經(jīng)過的路徑長度為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)與y軸交于點C(0,4),與x軸交于A(﹣2,0),點B(4,0).
(1)求拋物線的解析式;
(2)若點M是拋物線上的一動點,且在直線BC的上方,當(dāng)S△MBC取得最大值時,求點M的坐標(biāo);
(3)在直線的上方,拋物線是否存在點M,使四邊形ABMC的面積為15?若存在,求出點M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某養(yǎng)殖場計劃用96米的竹籬笆圍成如圖所示的①、②、③三個養(yǎng)殖區(qū)域,其中區(qū)域①是正方形,區(qū)域②和③是矩形,且AG∶BG=3∶2.設(shè)BG的長為2x米.
(1)用含x的代數(shù)式表示DF= ;
(2)x為何值時,區(qū)域③的面積為180平方米;
(3)x為何值時,區(qū)域③的面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,動點從點出發(fā),以每秒個單位長度的速度沿著方向向點運動,動點從點出發(fā),以每秒個單位長度的速度沿著方向向點運動,如果,兩點同時出發(fā),當(dāng)到達點處時,兩點都停止運動.設(shè)運動的時間為秒,的面積為.
(1)用含的代數(shù)式表示:
, , ;
(2)求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,C、D為⊙O上的點,且AD平分∠CAB,作DE⊥AB于點E.
(1)求證:AC∥OD;
(2)若OE=4,求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形)。
(1)將△ABC沿x軸方向向左平移6個單位,畫出平移后得到的△A1B1C1
(2)將△ABC繞著點A順時針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△AB2C2,并直接寫出點B2、C2的坐標(biāo);
(3)在第(2)問中,點B旋轉(zhuǎn)到點B2的過程中運動的路徑長是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,∠BAC=60°,延長BA至點P使AP=AC, 作CD平分∠ACB交AB于點E,交⊙O于點D. 連結(jié)PC,BD.
(1)求證:PC為⊙O的切線;
(2)求證:BD=PA;
(3)若PC=,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com