【題目】已知二次函數(shù)yax26ax5aa為常數(shù))的圖像為拋物線C

1)求證:不論a為何值,拋物線Cx軸總有兩個(gè)不同的公共點(diǎn);

2)設(shè)拋物線Cx軸于點(diǎn)A、B,交y軸于點(diǎn)D,若ABD的面積為20,求a的值;

3)設(shè)點(diǎn)E2,4)、F34),若拋物線C與線段EF只有一個(gè)公共點(diǎn),結(jié)合函數(shù)圖像,直接寫出a的取值范圍.

【答案】1)見解析;(2a±2;(3)-a1

【解析】

1)△=-6a2-4a×5a=15a20,即可求解;
2)△ABD的面積=AB×|yD|=×4×5|a|=20,即可求解;
3)分a0、a0兩種情況,通過畫圖找臨界點(diǎn)即可求解.

1)∵二次函數(shù)yax26ax5a,

a≠0,
∴△=-6a2-4a×5a=15a20

∴不論a為何值,拋物線Cx軸總有兩個(gè)不同的公共點(diǎn);

2)解:∵ 當(dāng)x0時(shí),y5a

D05a),

當(dāng)y=0,時(shí)x=15,

AB的坐標(biāo)為(1,0),(5,0),

由(1)得,AB514

ABD的面積為20

×4×|5a|20,

解得 a±2

3)①當(dāng)a0時(shí),如圖1EF與拋物線不可能有公共點(diǎn);

②當(dāng)a0時(shí),如圖2,

臨界點(diǎn)為點(diǎn)E、F
當(dāng)拋物線過點(diǎn)E時(shí),即x=2y=ax2-6ax+5a-3a=-3a=4,解得:a=-,

當(dāng)拋物線過點(diǎn)F時(shí),即x=3,y=ax2-6ax+5a-3a=-4a=4,解得:a=-1,

∴-a1

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)均為 1,線段 AB、DE 的端點(diǎn) A、B、DE 均在小正方形的頂點(diǎn)上.

1)在圖中畫一個(gè)以 AB 為一腰的等腰△ABC, tan ABC ,點(diǎn)C 在小正方形的頂點(diǎn)上;

2)在圖中畫一個(gè)以 DE 為邊的平行四邊形 DEFG,且G 45° ,點(diǎn) F、G 均在小正方形的頂點(diǎn)上,連接 CG,請(qǐng)直接寫出線段 CG 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,以點(diǎn)A為圓心,小于AC長(zhǎng)為半徑作圓弧,分別交AB,ACEF兩點(diǎn),再分別以EF為圓心,大于EF長(zhǎng)為半徑作圓弧,兩條圓弧交于點(diǎn)P,連接AP,交CD于點(diǎn)M,若∠ACD110°,則∠CMA的度數(shù)為(  )

A.30°B.35°C.70°D.45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某縣2015年初中畢業(yè)生數(shù)學(xué)質(zhì)量檢測(cè)成績(jī)等級(jí)的分布情況,隨機(jī)抽取了該縣若干名初中畢業(yè)生的數(shù)學(xué)質(zhì)量檢測(cè)成績(jī),按A,B,C,D四個(gè)等級(jí)進(jìn)行統(tǒng)計(jì)分析,并繪制了如下尚不完整的統(tǒng)計(jì)圖:

請(qǐng)根據(jù)以上統(tǒng)計(jì)圖提供的信息,解答下列問題:

1)本次抽取的學(xué)生有   名;補(bǔ)全條形統(tǒng)計(jì)圖1;

2)根據(jù)調(diào)查結(jié)果,請(qǐng)估計(jì)該縣1430名初中畢業(yè)生數(shù)學(xué)質(zhì)量檢測(cè)成績(jī)?yōu)?/span>A級(jí)的人數(shù)是

3)某校A等級(jí)中有甲、乙、丙、丁4名學(xué)生成績(jī)并列第一,現(xiàn)在要從這4位學(xué)生中抽取2名學(xué)生在校進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)介紹,用列舉法求出恰好選中甲乙兩位學(xué)生的概率。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,D、E分別是邊AB、AC的中點(diǎn),點(diǎn)FBC上一點(diǎn),∠B=∠DEF

1)求證:四邊形BDEF是平行四邊形;

2)直接寫出當(dāng)ABC滿足什么條件時(shí),四邊形BDEF是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了了解本校學(xué)生采用何種方式上網(wǎng)查找所需要的學(xué)習(xí)資源,隨機(jī)抽取部分學(xué)生了解情況,并將統(tǒng)計(jì)結(jié)果繪制成頻數(shù)分布表及頻數(shù)分布直方圖.

1)頻數(shù)分布表中的值:_____________,______________;

2)補(bǔ)全頻數(shù)分布直方圖;

3)若全校有1000名學(xué)生,估計(jì)該校利用搜索引擎上網(wǎng)查找學(xué)習(xí)資源的學(xué)生有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)觀察下列圖形與等式的關(guān)系,并填空:

第一個(gè)圖形:;

第二個(gè)圖形:;

第一個(gè)等式:9+413;第二個(gè)等式:13+821;

第三個(gè)圖形:;……;

第三個(gè)等式:   +      ;……;

2)根據(jù)以上圖形與等式的關(guān)系,請(qǐng)你猜出第n個(gè)等式(用含有n的代數(shù)式表示),并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的邊長(zhǎng)是3,點(diǎn)P是直線BC上一點(diǎn),連接PA,將線段PA繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,在直線BA上取點(diǎn)F,使BF=BP,且點(diǎn)F與點(diǎn)EBC同側(cè),連接EFCF

1)如圖,當(dāng)點(diǎn)PCB延長(zhǎng)線上時(shí),求證:四邊形PCFE是平行四邊形;

2)如圖,當(dāng)點(diǎn)P在線段BC上時(shí),四邊形PCFE是否還是平行四邊形,說明理由;

3)在(2)的條件下,四邊形PCFE的面積是否有最大值?若有,請(qǐng)求出面積的最大值及此時(shí)BP長(zhǎng);若沒有,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,賓館大廳的天花板上掛有一盞吊燈AB,某人從C點(diǎn)測(cè)得吊燈頂端A的仰角為,吊燈底端B的仰角為,從C點(diǎn)沿水平方向前進(jìn)6米到達(dá)點(diǎn)D,測(cè)得吊燈底端B的仰角為.請(qǐng)根據(jù)以上數(shù)據(jù)求出吊燈AB的長(zhǎng)度.(結(jié)果精確到0.1米.參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,≈1.41,≈1.73

查看答案和解析>>

同步練習(xí)冊(cè)答案