解下列方程(1)解方程:x2+4x+2=0
(2)解方程x2-2x-2=0
分析:先配方,寫成(x+a)2=b的形式,然后利用數(shù)的開平方法解答.
解答:解:(1)配方得,(x+2)2=2,
開方得,x+2=±
2
,
解得x1=
2
-2,x2=-
2
-2;

(2)配方得,(x-1)2=3,
開方得,x-1=±
3
,
解得x1=
3
+1,x2=-
3
+1.
點(diǎn)評:本題考查了一元二次方程的兩種解法的綜合運(yùn)用,解這類問題要配方,把原方程化成x2=a(a≥0)的形式,利用直接開平方求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程 x1 x2 x1+x2 x1.x2
(1)
0
0
2
2
2
2
0
0
(2)
-4
-4
1
1
-3
-3
-4
-4
(3)
2
2
3
3
5
5
6
6
請同學(xué)們仔細(xì)觀察方程的解,你會發(fā)現(xiàn)方程的解與方程中未知數(shù)的系數(shù)和常數(shù)項(xiàng)之間有一定的關(guān)系.
一般的,對于關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根為x1、x2
則x1+x2=
-p
-p
,x1.x2=
q
q

(2)運(yùn)用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為
B
B

A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的兩根,利用上述結(jié)論,不解方程,求x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

探究發(fā)現(xiàn):
解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程 x1 x2 x1+x2 x1•x2
(1)
(2)
(3)
(1)請用文字語言概括你的發(fā)現(xiàn).
(2)一般的,對于關(guān)于x的方程x2+px+q=0的兩根為x1、x2,則x1+x2=
-p
-p
,x1•x2
q
q

(3)運(yùn)用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為
B
B

A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的兩根,試求(1+x1)(1+x2)和x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

探究發(fā)現(xiàn):
解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方 程x1x2x1+x2x1•x2
(1)
(2)
(3)
(1)請用文字語言概括你的發(fā)現(xiàn).
(2)一般的,對于關(guān)于x的方程x2+px+q=0的兩根為x1、x2,則x1+x2=______,x1•x2______.
(3)運(yùn)用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為______
A.-2   B.2   C.-7   D.7
②已知x1,x2是方程x2-x-3=0的兩根,試求(1+x1)(1+x2)和x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方 程x1x2x1+x2x1.x2
(1)________________________
(2)________________________
(3)________________________
請同學(xué)們仔細(xì)觀察方程的解,你會發(fā)現(xiàn)方程的解與方程中未知數(shù)的系數(shù)和常數(shù)項(xiàng)之間有一定的關(guān)系.
一般的,對于關(guān)于x的方程x2+px+q=0(p,q為常數(shù),p2-4q≥0)的兩根為x1、x2
則x1+x2=______,x1.x2=______.
(2)運(yùn)用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為______
A.-2   B.2   C.-7   D.7
②已知x1,x2是方程x2-x-3=0的兩根,利用上述結(jié)論,不解方程,求x12+x22的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010-2011學(xué)年甘肅省平?jīng)鍪星f浪縣韓店中學(xué)九年級(上)期末數(shù)學(xué)試卷(二)(解析版) 題型:解答題

探究發(fā)現(xiàn):
解下列方程,將得到的解填入下面的表格中,觀察表格中兩個解的和與積,它們和原來的方程的系數(shù)有什么聯(lián)系?
(1)x2-2x=0(2)x2+3x-4=0(3)x2-5x+6=0
方  程x1x2x1+x2x1•x2
(1)
(2)
(3)
(1)請用文字語言概括你的發(fā)現(xiàn).
(2)一般的,對于關(guān)于x的方程x2+px+q=0的兩根為x1、x2,則x1+x2=______,x1•x2______.
(3)運(yùn)用以上發(fā)現(xiàn),解決下面的問題:
①已知一元二次方程x2-2x-7=0的兩個根為x1,x2,則x1+x2的值為______
A.-2     B.2     C.-7     D.7
②已知x1,x2是方程x2-x-3=0的兩根,試求(1+x1)(1+x2)和x12+x22的值.

查看答案和解析>>

同步練習(xí)冊答案