【題目】如圖,已知正方形的邊長為,點(diǎn)是邊上-動(dòng)點(diǎn),連接,將繞點(diǎn)順時(shí)針旋轉(zhuǎn)到,連接,則的最小值是( )
A.B.C.D.
【答案】A
【解析】
連接BF,過點(diǎn)F作FG⊥AB交AB延長線于點(diǎn)G,通過證明△AED≌△GFE(AAS),確定F點(diǎn)在BF的射線上運(yùn)動(dòng);作點(diǎn)C關(guān)于BF的對稱點(diǎn)C',由三角形全等得到∠CBF=45°,從而確定C'點(diǎn)在AB的延長線上;當(dāng)D、F、C'三點(diǎn)共線時(shí),DF+CF=DC'最小,在Rt△ADC'中,AD=3,AC'=6,求出DC'=即可.
解:連接BF,過點(diǎn)F作FG⊥AB交AB延長線于點(diǎn)G,
∵將ED繞點(diǎn)E順時(shí)針旋轉(zhuǎn)90°到EF,
∴EF⊥DE,且EF=DE,
∴△AED≌△GFE(AAS),
∴FG=AE,
∴F點(diǎn)在BF的射線上運(yùn)動(dòng),
作點(diǎn)C關(guān)于BF的對稱點(diǎn)C',
∵EG=DA,FG=AE,
∴AE=BG,
∴BG=FG,
∴∠FBG=45°,
∴∠CBF=45°,
∴C'點(diǎn)在AB的延長線上,
當(dāng)D、F、C'三點(diǎn)共線時(shí),DF+CF=DC'最小,
在Rt△ADC'中,AD=3,AC'=6,
∴DC'=,
∴DF+CF的最小值為,
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,,以點(diǎn)為圓心,以為半徑作優(yōu)弧,交于點(diǎn),交于點(diǎn).點(diǎn)在優(yōu)弧上從點(diǎn)開始移動(dòng),到達(dá)點(diǎn)時(shí)停止,連接.
(1)當(dāng)時(shí),判斷與優(yōu)弧的位置關(guān)系,并加以證明;
(2)當(dāng)時(shí),求點(diǎn)在優(yōu)弧上移動(dòng)的路線長及線段的長.
(3)連接,設(shè)的面積為,直接寫出的取值范圍.
備用圖
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABDC是⊙O的內(nèi)接四邊形,∠BDC=120°,AB=AC,連接對角線AD,BC,點(diǎn)F在線段BD的延長線上,且CF=DF,⊙O的切線CE交BF于點(diǎn)E.
(1)求證:CE∥AB;
(2)求證:AD=BD+CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線交坐標(biāo)軸于點(diǎn)、點(diǎn)且面積為
如圖1,求的值;
如圖2,點(diǎn)在軸的負(fù)半軸上,在線段上,連,作交線段于, 若點(diǎn)縱坐標(biāo)為長度為,求與的函數(shù)關(guān)系式(不寫自變量取值范圍);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤中,指針位置固定,三個(gè)扇形的面積都相等,且分別標(biāo)有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),指針?biāo)干刃沃械臄?shù)字是奇數(shù)的概率為 ;
(2)小明先轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),記錄下指針?biāo)干刃沃械臄?shù)字;接著再轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動(dòng)時(shí),再次記錄下指針?biāo)干刃沃械臄?shù)字,求這兩個(gè)數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系內(nèi),拋物線與線段有兩個(gè)不同的交點(diǎn),其中點(diǎn),點(diǎn).有下列結(jié)論:
①直線的解析式為;②方程有兩個(gè)不相等的實(shí)數(shù)根;③a的取值范圍是或.
其中,正確結(jié)論的個(gè)數(shù)為( )
A.0B.1C.2D.3
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 在中,,, 點(diǎn)為中點(diǎn), 點(diǎn)在邊上, 連接,過點(diǎn)作
上交于點(diǎn),連接。下列結(jié)論:
(1)(2)(3)(4)
其中正確的是__________(填寫所有正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解朝陽社區(qū)歲居民最喜歡的支付方式,某興趣小組對社區(qū)內(nèi)該年齡段的部分居民展開了隨機(jī)問卷調(diào)查(每人只能選擇其中一項(xiàng)),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中信息解答下列問題:
(1)求參與問卷調(diào)查的總?cè)藬?shù).
(2)補(bǔ)全條形統(tǒng)計(jì)圖.
(3)該社區(qū)中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com