【題目】已知:如圖,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,連接CD,C,D,E三點在同一條直線上,連接BD,BE.以下四個結論:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中結論正確的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4
【答案】D
【解析】如圖:
①∵∠BAC=∠DAE=90°,
∴∠BAC+∠DAC=∠DAE+∠DAC,
即∠BAD=∠CAE.
在△ABD和△ACE中,
,
∴△ABD≌△ACE(SAS),
∴BD=CE,
∴①正確;
②∵∠BAC=90°,AB=AC,
∴∠ABC=45°,
∴∠ABD+∠DBC=45°.
∴∠ACE+∠DBC=45°,
∴②正確;
∵△ABD≌△ACE,
∴∠ABD=∠ACE.
∵∠CAB=90°,
∴∠ABD+∠AFB=90°,
∴∠ACE+∠AFB=90°.
∵∠DFC=∠AFB,
∴∠ACE+∠DFC=90°,
∴∠FDC=90°.
∴BD⊥CE,
∴③正確;
④∵∠BAC=∠DAE=90°,∠BAC+∠DAE+∠BAE+∠DAC=360°,
∴∠BAE+∠DAC=180°,故④正確.
所以①②③④都正確,共計4個.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】近年來,地震、泥石流等自然災害頻繁發(fā)生,造成極大的生命和財產(chǎn)損失.為了更好地做好“防震減災”工作,我市相關部門對某中學學生“防震減災”的知曉率采取隨機抽樣的方法進行問卷調(diào)查,調(diào)查結果分為“非常了解”、“比較了解”、“基本了解”和“不了解”四個等級.小明根據(jù)調(diào)查結果繪制了如圖統(tǒng)計圖,請根據(jù)提供的信息回答問題:
(1)本次調(diào)查中,樣本容量是 ;
(2)扇形統(tǒng)計圖中“基本了解”部分所對應的扇形圓心角是 ;在該校2000名學生中隨機提問一名學生,對“防震減災”不了解的概率的估計值為 ;
(3)請補全頻數(shù)分布直方圖.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分別為D,E,F為BC中點,BE與DF,DC分別交于點G,H,∠ABE=∠CBE.
(1)線段BH與AC相等嗎?若相等給予證明,若不相等請說明理由;
(2)求證:BG2﹣GE2=EA2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,A、B、C三點的坐標分別為:A(﹣5,5)、B(﹣3,0)、C(0,3).
(1)①畫出△ABC,它的面積為多少;
②在△ABC中,點A經(jīng)過平移后的對應點A′(1,6),將△ABC作同樣的平移得到△A′B′C′,畫出平移后的△A′B′C′,并寫出B′、C′的坐標;
(2)點P(﹣3,m)為△ABC內(nèi)一點,將點P向右平移4個單位后,再向下平移6個單位得到點Q(n,﹣3),則m= , n= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=﹣x2+bx+c上部分點的橫坐標x,縱坐標y的對應值如表:
x | … | ﹣2 | ﹣1 | 0 | 1 | 2 | … |
y | … | 0 | 4 | 6 | 6 | 4 | … |
從上表可知,有下列說法:
①拋物線與y軸的交點為(0,6);
②拋物線的對稱軸是x=1;
③拋物線與x軸有兩個交點,它們之間的距離是;
④在對稱軸左側y隨x增大而增大.
其中正確的說法是( )
A.①②③ B.②③④ C.②③ D.①④
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com