【題目】如圖,拋物線與軸交于、兩點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式和頂點(diǎn)的坐標(biāo);
(2)判斷的形狀,證明你的結(jié)論;
(3)點(diǎn)是軸上的一個動點(diǎn),當(dāng)的周長最小時,求的值.
【答案】(1)點(diǎn)坐標(biāo)為;(2)為直角三角形;(3)
【解析】
(1)把A點(diǎn)坐標(biāo)代入可求得b的值,可求得拋物線的解析式,再求D點(diǎn)坐標(biāo)即可;
(2)由解析式可求得A、B、C的坐標(biāo),可求得AB、BC、AC的長,由勾股定理的逆定理可判定△ABC為直角三角形;
(3)先求得C點(diǎn)關(guān)于x軸的對稱點(diǎn)E,連接DE,與軸交于點(diǎn)M,則M即為所求,可求得DE的解析式,令其y=0,可求得M點(diǎn)的坐標(biāo),可求得m.
解:(1)∵點(diǎn)在拋物線上,
∴,解得,
∴ 拋物線解析式為,
∵ ,
∴ 點(diǎn)坐標(biāo)為;
(2)為直角三角形,證明如下:
在中,令可得,解得或,
∴ 為,且為,
∴ ,,,
由勾股定理可求得,,
又,
∴ ,
∴ 為直角三角形;
(3)∵ ,
∴ 點(diǎn)關(guān)于軸的對稱點(diǎn)為,
如圖,連接,交軸于點(diǎn),則即為滿足條件的點(diǎn),
設(shè)直線解析式為,
把、坐標(biāo)代入可得,解得,
∴ 直線解析式為,令,可得,
∴ .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一個三角形紙片ABC,面積為25,BC的長為10,∠B、∠C都為銳角,M為AB邊上的一動點(diǎn)(M與A、B不重合),過點(diǎn)M作MN∥BC交AC于點(diǎn)N,設(shè)MN=x.
(1)用x表示△AMN的面積;
(2)△AMN沿MN折疊,使△AMN緊貼四邊形BCNM(邊AM、AN落在四邊形BCNM所在的平面內(nèi)),設(shè)點(diǎn)A落在平面BCNM內(nèi)的點(diǎn)A′,△A′MN與四邊形BCNM重疊部分的面積為y.
①用含x的代數(shù)式表示y,并寫出x的取值范圍.
②當(dāng)x為何值時,重疊部分的面積y最大,最大為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,在平面直角坐標(biāo)系中,將△ABO繞點(diǎn)A順時針旋轉(zhuǎn)到△AB1C1的位置,點(diǎn)B、O分別落在點(diǎn)B1、C1處,點(diǎn)B1在x軸上,再將△AB1C1繞點(diǎn)B1順時針旋轉(zhuǎn)到△A1B1C2的位置,點(diǎn)C2在x軸上,將△A1B1C2繞點(diǎn)C2順時針旋轉(zhuǎn)到△A2B2C2的位置,點(diǎn)A2在x軸上,依次進(jìn)行下去….若點(diǎn)A(,0),B(0,2),則點(diǎn)B2016的坐標(biāo)為____________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠B=∠C=30°,點(diǎn)O是BC邊上一點(diǎn),以點(diǎn)O為圓心、OB為半徑的圓經(jīng)過點(diǎn)A,與BC交于點(diǎn)D.
⑴ 試說明AC與⊙O相切;
⑵ 若,求圖中陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(定義)從三角形(不是等腰三角形)一個頂點(diǎn)引出一條射線與對邊相交,頂點(diǎn)與交點(diǎn)之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖1,△ABC中,∠A=40°,∠B=60°,CD平分∠ACB.求證:CD為△ABC的完美分割線;
(2)在△ABC中,CD是△ABC的完美分割線,其中△ACD為等腰三角形,設(shè)∠A=x°,∠B=y°,則y與x之間的關(guān)系式為_____________________________;
(3)如圖2,△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊△ABC內(nèi)接于⊙O,P是弧AB上任一點(diǎn)(點(diǎn)P不與點(diǎn)A、B重合),連接AP、BP,過點(diǎn)C作CM∥BP交PA的延長線于點(diǎn)M.
(1)求∠APC的度數(shù).
(2)求證:△PCM為等邊三角形.
(3)若PA=1,PB=3,求△PCM的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用合適的方法解方程:
(1)(2t+3)2=3(2t+3)
(2)(2x﹣1)2=9(x﹣2)2
(3)2x2=5x﹣1
(4)x2+4x﹣5=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線交x軸于點(diǎn)A(8,0),直線經(jīng)過點(diǎn)A,交y軸于點(diǎn)B,點(diǎn)P是直線上的一個動點(diǎn),過點(diǎn)P作x軸的垂線,過點(diǎn)B作y軸的垂線,兩條垂線交于點(diǎn)D,連接PB,設(shè)點(diǎn)P的橫坐標(biāo)為m.
(1)若點(diǎn)P的橫坐標(biāo)為m,則PD的長度為 (用含m的式子表示);
(2)如圖1,已知點(diǎn)Q是直線上的一個動點(diǎn),點(diǎn)E是x軸上的一個動點(diǎn),是否存在以A,B,E,Q為頂點(diǎn)的平行四邊形,若存在,求出E的坐標(biāo);若不存在,說明理由;
(3)如圖2,將△BPD繞點(diǎn)B旋轉(zhuǎn),得到△BD′P′,且旋轉(zhuǎn)角∠PBP′=∠OCA,當(dāng)點(diǎn)P的對應(yīng)點(diǎn)P′落在坐標(biāo)軸上時,請直接寫出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-x2+1,下列結(jié)論:
①拋物線開口向上;
②拋物線與x軸交于點(diǎn)(-1,0)和點(diǎn)(1,0);
③拋物線的對稱軸是y軸;
④拋物線的頂點(diǎn)坐標(biāo)是(0,1);
⑤拋物線y=-x2+1是由拋物線y=-x2向上平移1個單位得到的.
其中正確的個數(shù)有( )
A. 5個B. 4個C. 3個
D. 2個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com