【題目】在△ABC中,∠ABC=45°,F是高AD與高BE的交點(diǎn).
(1)求證:△ADC≌△BDF.
(2)連接CF,若CD=4,求CF的長.
【答案】(1)見解析;(2)4
【解析】
(1)先證明AD=BD,再證明∠FBD=∠DAC,從而利用ASA證明△BDF≌△ADC;
(2)利用全等三角形對應(yīng)邊相等得出DF=CD=4,根據(jù)勾股定理求出CF即可.
(1)證明:∵AD⊥BC,
∴∠FDB=∠ADC=90°,
∵∠ABC=45°,
∴∠BAD=45°=∠ABD,
∴AD=BD,
∵BE⊥AC,
∴∠AEF=∠FDB=90°,
∵∠AFE=∠BFD,
∴由三角形內(nèi)角和定理得:∠CAD=∠FBD,
在△ADC和△BDE中
∴△ADC≌△BDE(ASA);
(2)解:∵△ADC≌△BDE,CD=4,
∴DF=CD=4,
在Rt△FDC中,由勾股定理得:CF===4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(滿分8分)我們把依次連接任意四邊形各邊中點(diǎn)得到的四邊形叫做中點(diǎn)四邊形.
如圖,在四邊形ABCD中,E、F、G、H分別是AB、BC、CD、DA的中點(diǎn),依次連接各邊中點(diǎn)得到中點(diǎn)四邊形EFGH.
(1)這個中點(diǎn)四邊形EFGH的形狀是____________;
(2)證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,點(diǎn)E為CD的中點(diǎn),射線BE交AD的延長線于點(diǎn)F,連接CF.
(1)求證:四邊形BCFD是菱形;
(2)若AD=1,BC=2,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC=5,cosB=,P是邊AB上一點(diǎn),以P為圓心,PB為半徑的⊙P與邊BC的另一個交點(diǎn)為D,聯(lián)結(jié)PD、AD.
(1)求△ABC的面積;
(2)設(shè)PB=x,△APD的面積為y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出定義域;
(3)如果△APD是直角三角形,求PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知是等邊三角形,點(diǎn)的坐標(biāo)是,點(diǎn)在第一象限,的平分線交軸于點(diǎn),把繞著點(diǎn)按逆時針方向旋轉(zhuǎn),使邊與重合,得到,連接.求:的長及點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知在△ABC中,AB=AC,D是BC邊上任意一點(diǎn),E在AC邊上,且AD=AE.
(1)若∠BAD=40°,求∠EDC的度數(shù);
(2)若∠EDC=15°,求∠BAD的度數(shù);
(3)根據(jù)上述兩小題的答案,試探索∠EDC與∠BAD的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點(diǎn)D是BC邊上的一個動點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(3)當(dāng)△ADE是等腰三角形時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,圖①由4根火柴棍圍成;圖②由12根火柴棍圍成;圖③由24根火柴棍圍成;…按此規(guī)律,則第⑥個圖形由( )根火柴棍圍成.
A. 60 B. 72 C. 84 D. 112
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O是以AB為直徑的△ABC的外接圓,過點(diǎn)A作⊙O的切線交OC的延長線于點(diǎn)D,交BC的延長線于點(diǎn)E.
(1)求證:∠DAC=∠DCE;
(2)若AB=2,sin∠D=,求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com