【題目】如圖,一個(gè)圓形噴水池的中央垂直于水面安裝了一個(gè)柱形噴水裝置OA,O恰好在水面中心,安置在柱子頂端A處的噴頭向外噴水,水流在各個(gè)方向上沿形狀相同的拋物線路徑落下,且在過OA的任一平面上,按如圖所示建立直角坐標(biāo)系,水流噴出的高度y(m)與水平距離x(m)之間的關(guān)系式可以用y=﹣x2+bx+c表示,且拋物線經(jīng)過點(diǎn)B(2),C(2,).請根據(jù)以上信息,解答下列問題;

(1)求拋物線的函數(shù)關(guān)系式,并確定噴水裝置OA的高度;

(2)噴出的水流距水面的最大高度是多少米?

(3)若不計(jì)其他因素,水池的半徑至少要多少米,才能使噴出的水流不至于落在池外?

【答案】(1)y=﹣x2+2x+,噴水裝置OA的高度是米;(2)噴出的水流距水面的最大高度是米;(3)水池的半徑至少要2.5米,才能使噴出的水流不至于落在池外.

【解析】

(1)根據(jù)待定系數(shù)法,只需將B、C坐標(biāo)代入二次函數(shù)解析式即可求出二次函數(shù)的解析式;

(2)利用拋物線的頂點(diǎn),可求出噴出的水流距離水面的最大高度;

(3)根據(jù)題意只需找到拋物線與x軸交點(diǎn)的橫坐標(biāo),即可求出噴出水流的最遠(yuǎn)距離,即可得出答案.

解:(1)∵拋物線y=﹣x2+bx+c表示,且經(jīng)過點(diǎn)B(,2),C(2,),

,

解得,

∴拋物線y=﹣x2+2x+,

當(dāng)x0時(shí),y

即拋物線的函數(shù)關(guān)系式是y=﹣x2+2x+,噴水裝置OA的高度是米;

(2)y=﹣x2+2x+=﹣(x1)2+,

∴當(dāng)x1時(shí),y取得最大值,此時(shí)y,

答:噴出的水流距水面的最大高度是米;

(3)令﹣x2+2x+0,

解得,x1=﹣0.5,x22.5,

答:水池的半徑至少要2.5米,才能使噴出的水流不至于落在池外.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場購進(jìn)一種每件價(jià)格為100元的新商品,在商場試銷發(fā)現(xiàn):銷售單價(jià)x(元/件)與每天銷售量y(件)之間滿足如圖所示的關(guān)系:(1)求出yx之間的函數(shù)關(guān)系式;(2)如果商店銷售這種商品,每天要獲得1500元利潤,那么每件商品的銷售價(jià)應(yīng)定為多少元?(3)寫出每天的利潤W與銷售單價(jià)x之間的函數(shù)關(guān)系式;若你是商場負(fù)責(zé)人,會(huì)將售價(jià)定為多少,來保證每天獲得的利潤最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+5y軸交于點(diǎn)A,與x軸交于點(diǎn)B.拋物線y=﹣x2+bx+cAB兩點(diǎn).

1)寫出點(diǎn)A,B的坐標(biāo);

2)求拋物線的解析式;

3)過點(diǎn)AAC平行于x軸,交拋物線于點(diǎn)C,點(diǎn)P為拋物線上的一動(dòng)點(diǎn)(點(diǎn)PAC上方),作PD平行于y軸交AB于點(diǎn)D,問當(dāng)點(diǎn)P在何位置時(shí),四邊形APCD的面積最大?并求出最大面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】被譽(yù)為“中原第一高樓”的鄭州會(huì)展賓館(俗稱“大玉米”)坐落在風(fēng)景如畫的如意湖,是來鄭州觀光的游客留影的最佳景點(diǎn).學(xué)完了三角函數(shù)知識(shí)后,劉明和王華同學(xué)決定用自己學(xué)到的知識(shí)測量“大王米”的高度,他們制訂了測量方案,并利用課余時(shí)間完成了實(shí)地測量.測量項(xiàng)目及結(jié)果如下表:

項(xiàng)目

內(nèi)容

課題

測量鄭州會(huì)展賓館的高度

測量示意圖

如圖,在E點(diǎn)用測傾器DE測得樓頂B的仰角是α,前進(jìn)一段距離到達(dá)C點(diǎn)用測傾器CF測得樓頂B的仰角是β,且點(diǎn)A、B、C、DE、F均在同一豎直平面內(nèi)

測量數(shù)據(jù)

α的度數(shù)

β的度數(shù)

EC的長度

測傾器DECF的高度

40°

45°

53

1.5

請你幫助該小組根據(jù)上表中的測量數(shù)據(jù),求出鄭州會(huì)展賓館的高度(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,結(jié)果保留整數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠ACB90°,BC3AC4,點(diǎn)OAB的中點(diǎn),點(diǎn)D是邊AC上一點(diǎn),DEBD,交BC的延長線于點(diǎn)E,ODDF,交BC邊于點(diǎn)F,過點(diǎn)EEGAB,垂足為點(diǎn)G,EG分別交BDDF、DC于點(diǎn)M、N、H

(1)求證:;

(2)設(shè)CDx,NEy,求y關(guān)于x的函數(shù)關(guān)系式及其定義域;

(3)當(dāng)△DEF是以DE為腰的等腰三角形時(shí),求線段CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長分別為48的兩個(gè)正方形ABCDCEFG并排放在一起,連結(jié)BD并延長交EG于點(diǎn)T,交FG于點(diǎn)P,則GT的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】自主學(xué)習(xí),請閱讀下列解題過程.

解一元二次不等式:x2﹣3x>0.

解:設(shè)x2﹣3x=0,解得:x1=0,x2=5.則拋物線y=x2﹣3x與x軸的交點(diǎn)坐標(biāo)為(0,0)和(3,0).畫出二次函數(shù)y=x2﹣3x的大致圖象(如圖所示),由圖象可知:當(dāng)x<0或x>3時(shí)函數(shù)圖象位于x軸上方,此時(shí)y>0,即x2﹣3x>0,所以,一元二次不等式x2﹣3x>0的解集為:x<0或x>3.

通過對上述解題過程的學(xué)習(xí),按其解題的思路和方法解答下列問題:

(1)上述解答過程中,滲透了下列數(shù)學(xué)思想中的      .(只填序號)

①轉(zhuǎn)化思想 ②分類討論思想 ③數(shù)形結(jié)合思想 ④整體思想

(2)一元二次不等式x2﹣3x<0的解集為   

(3)用類似的方法解一元二次不等式:x2﹣3x﹣4<0的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,DAC的中點(diǎn),EBC延長線上一點(diǎn),過AAHBE,連接ED并延長交ABF,交AHH.

(1)求證:AHCE;

(2)如果AB4AF,EH8,求DF的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著信息技術(shù)的迅猛發(fā)展,人們?nèi)ド虉鲑徫锏闹Ц斗绞礁佣鄻印⒈憬荩承?shù)學(xué)興趣小組設(shè)計(jì)了一份調(diào)查問卷,要求每人選且只選一種你最喜歡的支付方式.現(xiàn)將調(diào)查結(jié)果進(jìn)行統(tǒng)計(jì)并繪制成如下兩幅不完整的統(tǒng)計(jì)圖,請結(jié)合圖中所給的信息解答下列問題:

(1)這次活動(dòng)共調(diào)查了   人;在扇形統(tǒng)計(jì)圖中,表示支付寶支付的扇形圓心角的度數(shù)為   ;

(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整.觀察此圖,支付方式的眾數(shù)   ”;

(3)在一次購物中,小明和小亮都想從微信”、“支付寶”、“銀行卡三種支付方式中選一種方式進(jìn)行支付,請用畫樹狀圖或列表格的方法,求出兩人恰好選擇同一種支付方式的概率.

查看答案和解析>>

同步練習(xí)冊答案