精英家教網(wǎng)已知:在直角坐標(biāo)系中,直線y=2x+2與x軸交于點A,與y軸交于點B.
(1)畫出這個函數(shù)的圖象,并直接寫出A,B兩點的坐標(biāo);
(2)若點C是第二象限內(nèi)的點,且到x軸的距離為1,到y(tǒng)軸的距離為
12
,請判斷點C是否在這條直線上?(寫出判斷過程)
(3)在第(2)題中,作CD⊥x軸于D,那么在x軸上是否存在一點P,使△CDP≌△AOB?若存在,請求出點P的坐標(biāo);若不存在,請說明理由.
分析:(1)求出直線上的任意兩點,過這兩點作直線即可;
(2)若點C是第二象限內(nèi)的點,且到x軸的距離為1,到y(tǒng)軸的距離為
1
2
,可以判斷C的坐標(biāo)是(-
1
2
,1),代入直線解析式,即可判斷是否在直線上;
(3)可用SAS證明△CDP≌△AOB,即可求得P的坐標(biāo).
解答:精英家教網(wǎng)解:(1)如圖:A(-1,0),B(0,2)

(2)可設(shè)C點坐標(biāo)為(m,n)
∵C到x軸的距離為1,到y(tǒng)軸的距離為
1
2

∴|m|=
1
2
,|n|=1
∴m=±
1
2
n=±1(6分)
∵點C是第二象限內(nèi)的點
∴C點坐標(biāo)為(-
1
2
,1)點
當(dāng)x=-
1
2
時,y=-
1
2
×2+2=1,
∴點C在直線y=2x+2上(8分)

(3)存在(9分)
∵|CD|=1,|OA|=1,
∴|CD|=|OA|
又∵點P在x軸上
∴∠CDP=90°=∠AOB
若|DP|=|OB|=2時,可用SAS證明△CDP≌△AOB
∴當(dāng)P點坐標(biāo)為(-
1
2
+2,0)或(-
1
2
-2,0)時
即P點坐標(biāo)為(1
1
2
,0)或(-2
1
2
,0)時
△CDP≌△AOB.(14分)
點評:本題考查了函數(shù)圖象的作法,判斷一點是否在函數(shù)的圖象上,以及三角形全等的判定,是數(shù)與形結(jié)合的比較典型的題目.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知:在直角坐標(biāo)系中,A、B兩點是拋物線y=x2-(m-3)x-m與x軸的交點(A在B的右側(cè)),x1、x2分別是A、B兩點的橫坐標(biāo),且|x1-x2|=3.
(1)當(dāng)m>0時,求拋物線的解析式.
(2)如果(1)中所求的拋物線與y軸交于點C,問y軸上是否存在點D(不含與C重合的點),使得以D、O、A為頂點的三角形與△AOC相似?若存在,請求出D點的坐標(biāo);若不存在,請說明理由.
(3)一次函數(shù)y=kx+b的圖象經(jīng)過拋物線的頂點,且當(dāng)k>0時,圖象與兩坐標(biāo)軸所圍成的面積是
15
,求一次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:在直角坐標(biāo)系中.點E從O點出發(fā),以1個單位/秒的速度沿x軸正方向運(yùn)動,點F從O點出發(fā),以2個單位/秒的速度沿y軸正方向運(yùn)動.B(4,2),以BE為直徑作⊙O1
精英家教網(wǎng)
(1)若點E、F同時出發(fā),設(shè)線段EF與線段OB交于點G,試判斷點G與⊙O1的位置關(guān)系,并證明你的結(jié)論;
(2)在(1)的條件下,連接FB,幾秒時FB與⊙O1相切?
(3)若點E提前2秒出發(fā),點F再出發(fā).當(dāng)點F出發(fā)后,點E在A點的左側(cè)時,設(shè)BA⊥x軸于點A,連接AF交⊙O1于點P,試問AP•AF的值是否會發(fā)生變化?若不變,請說明理由并求其值;若變化,請求其值的變化范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△PQR在直角坐標(biāo)系中的位置如圖所示:
(1)求出△PQR的面積;
(2)畫出△P′Q′R′,使△P′Q′R′與△PQR關(guān)于y軸對稱,寫出點P′、Q′、R′的坐標(biāo);
(3)連接PP′,QQ′,判斷四邊形QQ′P′P的形狀,求出四邊形QQ′P′P的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2006•青島)已知△ABC在直角坐標(biāo)系中的位置如圖所示,如果△A′B′C′與△ABC關(guān)于y軸對稱,那么點A的對應(yīng)點A′的坐標(biāo)為( 。

查看答案和解析>>

同步練習(xí)冊答案