【題目】如圖,BP是∠ABC的平分線,APBPP,連接PC,若ABC的面積為1cm2PBC的面積為( ).

A. 0.4 cm2B. 0.5 cm2

C. 0.6 cm2D. 不能確定

【答案】B

【解析】

延長APBCE,根據(jù)已知條件證得ABP≌△EBP,根據(jù)全等三角形的性質(zhì)得到AP=PE,得出SABP=SEBPSACP=SECP,推出SPBC=SABC,代入求出即可.

如圖,延長APBCE

BP平分∠ABC,

∴∠ABP=EBP,

APBP,

∴∠APB=EPB=90°BP=BP,

∴△ABP≌△EBP(ASA),

AP=PE

SABP=SEBP,SACP=SECP,

SPBC=SABC=×1=0.5(cm2),

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請認(rèn)真觀察圖形,解答下列問題:

1)根據(jù)圖1中條件,試用兩種不同方法表示兩個(gè)陰影圖形的面積的和.

方法1 

方法2 

2)從中你能發(fā)現(xiàn)什么結(jié)論?請用等式表示出來: 

3)利用(2)中結(jié)論解決下面的問題:如圖2,兩個(gè)正方形邊長分別為ab,如果a+b=10,ab=21,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,平行四邊形ABCD的對角線AC、BD相交于點(diǎn)O,AE平分∠BAD,分別交BC、BD于點(diǎn)E、P,連接OE,ADC=60°,AB=BC=1,則下列結(jié)論:

①∠CAD=30°BD=S平行四邊形ABCD=ABACOE=ADSAPO=,正確的個(gè)數(shù)是( 。

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cy軸交于點(diǎn)A(0,2),對稱軸為直線x=﹣2,平行于x軸的直線與拋物線交于B、C兩點(diǎn),點(diǎn)B在對稱軸左側(cè),BC=6.

(1)求此拋物線的解析式.

(2)點(diǎn)Px軸上,直線CP將△ABC面積分成2:3兩部分,請直接寫出P點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1

1)求3A+6B;

2)若3A+6B的值與x無關(guān),求y的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我們知道,經(jīng)過三角形一頂點(diǎn)和此頂點(diǎn)所對邊上的任意一點(diǎn)的直線,均能把三角形分割成兩個(gè)三角形.

(1)如圖,在ABC中,∠A=25°,∠ABC=105°,過B作一直線交ACD,若BDABC分割成兩個(gè)等腰三角形,則∠BDA的度數(shù)是________°;

(2)已知在ABC中,AB=AC,過頂點(diǎn)和頂點(diǎn)對邊上一點(diǎn)的直線,把ABC分割成兩個(gè)等腰三角形,則∠A的最小度數(shù)為________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的邊ABx軸上,點(diǎn)B坐標(biāo)(﹣3,0),點(diǎn)Cy軸正半軸上,且sinCBO=,點(diǎn)P從原點(diǎn)O出發(fā),以每秒一個(gè)單位長度的速度沿x軸正方向移動(dòng),移動(dòng)時(shí)間為t(0≤t≤5)秒,過點(diǎn)P作平行于y軸的直線l,直線l掃過四邊形OCDA的面積為S.

(1)求點(diǎn)D坐標(biāo).

(2)求S關(guān)于t的函數(shù)關(guān)系式.

(3)在直線l移動(dòng)過程中,l上是否存在一點(diǎn)Q,使以B、C、Q為頂點(diǎn)的三角形是等腰直角三角形?若存在,直接寫出Q點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解某公司員工的年收入情況,隨機(jī)抽查了公司部分員工年收入情況并繪制如圖所示統(tǒng)計(jì)圖.

1)請按圖中數(shù)據(jù)補(bǔ)全條形圖;

2)由圖可知員工年收入的中位數(shù)是 ,眾數(shù)是 ;

3)估計(jì)該公司員工人均年收入約為多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將圖1中的正方形剪開得到圖2,則圖2中共有4個(gè)正方形;將圖2中的一個(gè)正方形剪開得到圖3,圖3中共有7個(gè)正方形;將圖34個(gè)較小的正方中的一個(gè)剪開得到圖4,則圖4中共有10個(gè)正方形,照這個(gè)規(guī)律剪下去……

1)根據(jù)圖中的規(guī)律補(bǔ)全下表:

圖形標(biāo)號

1

2

3

4

5

6

n

正方形個(gè)數(shù)

1

4

7

10

2)求第幾幅圖形中有2020個(gè)正方形?

查看答案和解析>>

同步練習(xí)冊答案