【題目】如圖,已知AB⊥AD,AC⊥AE,AB=AD,AC=AE,BC分別交AD、DE于點G、F,AC與DE交于點H.

求證:
(1)△ABC≌△ADE;
(2)BC⊥DE.

【答案】
(1)證明:∵AB⊥AD,AC⊥AE,

∴∠DAB=∠CAE=90°,

∴∠DAB+∠DAC=∠CAE+∠DAC,

即∠BAC=∠DAE,

在△ABC和△ADE中,

∴△ABC≌△ADE(SAS)


(2)證明:∵△ABC≌△ADE,

∴∠E=∠C,

∵∠E+∠AHE=90°,∠AHE=∠DHC,

∴∠C+∠DHC=90°,

∴BC⊥DE


【解析】(1)利用AB⊥AD,AC⊥AE,得出∠DAB=∠CAE,進一步得出∠BAC=∠DAE,再根據(jù)已知條件及全等的判定方法SAS即可證得△ABC≌△ADE;(2)由△ABC≌△ADE,得出∠E=∠C,利用∠E+∠AHE=90°,推出∠C+∠DHC=90°,結(jié)論成立.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】10分有甲、乙兩個不透明的盒子,甲盒子中裝有3張卡片,卡片上分別寫著3、7、9;乙盒子中裝有4張卡片,卡片上分別寫著2、4、6、8;盒子外有一張寫著5的卡片所有卡片的形狀、大小都完全相同現(xiàn)隨機從甲、乙兩個盒子中各取出一張卡片,與盒子外的卡片放在一起,用卡片上標明的數(shù)量分別作為一條線段的長度

1請用樹狀圖或列表的方求這三條線段能組成三角形的概率;

2求這三條線段能組成直角三角形的概率

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一件商品的原價是100元,經(jīng)過兩次提價后的價格為121元,如果每次提價的百分率都是x,根據(jù)題意,下面列出的方程正確的是( )
A.100(1+x)=121
B.100(1﹣x)=121
C.100(1+x)2=121
D.100(1﹣x)2=121

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用下列圖形不能進行平面鑲嵌的是(
A.正三角形和正四邊形
B.正三角形和正六邊形
C.正四邊形和正八邊形
D.正四邊形和正十二邊形

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點(﹣3,4)關于原點對稱的點的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為了鼓勵居民節(jié)約用水,決定實行兩級收費制度.若每月用水量不超過14噸(含14噸),則每噸按政府補貼優(yōu)惠價m元收費;若每月用水量超過14噸,則超過部分每噸按市場價n元收費.小明家3月份用水20噸,交水費49元;4月份用水18噸,交水費42元.

(1)求每噸水的政府補貼優(yōu)惠價和市場價分別是多少?

(2)設每月用水量為x噸,應交水費為y元,請寫出y與x之間的函數(shù)關系式;

(3)小明家5月份用水26噸,則他家應交水費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙ORtACB的外接圓,點PAB延長線上的一點,PC切⊙O于點C,連AC

(1)若ACCP,求的值

(2)若sinAPC,求tanABC

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在課外學習時遇到這樣一個問題:

定義:如果二次函數(shù)是常數(shù)與是常數(shù))滿足,則稱這兩個函數(shù)互為“旋轉(zhuǎn)函數(shù)”.

求函數(shù)的 “旋轉(zhuǎn)函數(shù)”.

小明是這樣思考的:由函數(shù)可知a1=-1,b1=3,c1=-3,根據(jù)a1+a2=0,b1=b2,c1+c2=0求出a2,b2,c2,就能確定這個函數(shù)的“旋轉(zhuǎn)函數(shù)”.

請參考小明的方法解決下面的問題:

(1)寫出函數(shù)的“旋轉(zhuǎn)函數(shù)”;

(2)若函數(shù)互為“旋轉(zhuǎn)函數(shù)”,求(m+n)2017的值;

(3)已知函數(shù)的圖象與軸交于A、B兩點,與y軸交于點C,點A、B、C關于原點的對稱點分別是A1、B1C1,試證明經(jīng)過點A1B1、C1的二次函數(shù)與函數(shù)互為“旋轉(zhuǎn)函數(shù)”.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是( )

A. 數(shù)據(jù)3,4,47,3的眾數(shù)是4

B. 數(shù)據(jù)01,2,5,a的中位數(shù)是2

C. 一組數(shù)據(jù)的眾數(shù)和中位數(shù)不可能相等

D. 數(shù)據(jù)0,5,-7,-5,7的中位數(shù)和平均數(shù)都是0

查看答案和解析>>

同步練習冊答案