【題目】如圖,四邊形ABCD是邊長為2,一個(gè)銳角等于60°的菱形紙片,小芳同學(xué)將一個(gè)三角形紙片的一個(gè)頂點(diǎn)與該菱形頂點(diǎn)D重合,按順時(shí)針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點(diǎn)E、F,EDF=60°,當(dāng)CE=AF時(shí),如圖①小芳同學(xué)得出的結(jié)論是DE=DF。

(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CEAF時(shí),如圖②,小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由。

(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn)E、F分別在CB、BA的延長線上時(shí),如圖③,請寫出DE與DF的數(shù)量關(guān)系,并加以證明。

(3)連接EF,若△DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時(shí),y有最小值,最小值是多少?

【答案】(1)DF=DE.理由見解析;(2)DF=DE.理由見解析;(3),當(dāng)x=1時(shí),

【解析】1DF=DE.理由如下:

如答圖1,連接BD

∵四邊形ABCD是菱形,

AD=AB

又∵∠DAB=60°,

∴△ABD是等邊三角形,

AD=BD,ADB=60°,

∴∠DBE=DAF=60°

∵∠EDF=60°

∴∠ADF=BDE

∵在ADFBDE中,

∴△ADF≌△BDEASA),

DF=DE

2DF=DE.理由如下:
如答圖2,連接BD

∵四邊形ABCD是菱形,

AD=AB

又∵∠DAB=60°,

∴△ABD是等邊三角形,

AD=BDADB=60°,

∴∠DBE=DAF=60°

∵∠EDF=60°

∴∠ADF=BDE


∵在ADFBDE中,

,

∴△ADF≌△BDEASA),

DF=DE;

3)由(2)知,DE=DF,又∵∠EDF=60°

∴△DEF是等邊三角形,

∵四邊形ABCD是邊長為2的菱形,

DH=,

BF=CE=x,

AF=x-2

FH=AF+AH=x-2+1=x-1,

DF=,DG=×

y=SDEF=×EF×DG=×××=x-12+

∴當(dāng)x=1時(shí),y最小值=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOB中,∠O=90°AO=8cm,BO=6cm,點(diǎn)CA點(diǎn)出發(fā),在邊AO上以2cm/s的速度向O點(diǎn)運(yùn)動,與此同時(shí),點(diǎn)D從點(diǎn)B出發(fā),在邊BO上以1.5cm/s的速度向O點(diǎn)運(yùn)動,過OC的中點(diǎn)ECD的垂線EF,則當(dāng)點(diǎn)C運(yùn)動了__s時(shí),以C點(diǎn)為圓心,1.5cm為半徑的圓與直線EF相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由四個(gè)小正方形拼接成的L形圖案,按下列 要求畫出圖形。

(1)請你用兩種方法分別在L形圖案中添畫一個(gè)小正方形,使它成為軸對稱圖形;

(2)請你在L形圖案中添畫一個(gè)小正方形,使它成為中心對稱圖形。
3)請你在L}形圖案中移動一個(gè)小正方形,使它成為既是中心對稱圖形,又是軸對稱圖形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,∠1∠2,則不一定能使△ABD≌△ACD的條件是 ( )

A. ABAC B. BDCD C. ∠B∠C D. ∠BDA∠CDA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P、Q分別是邊長為4cm的等邊ABC邊AB、BC上的動點(diǎn),點(diǎn)P從頂點(diǎn)A,點(diǎn)Q從頂點(diǎn)B同時(shí)出發(fā),且它們的速度都為1cm/s,下面四個(gè)結(jié)論正確的有________________

BP=CM;②△ABQ≌△CAP;③∠CMQ的度數(shù)不變,始終等于60°;④當(dāng)?shù)?/span>秒或第秒時(shí),PBQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的一元二次方程(m-1)x2-x-2=0,

(1)若x=-1是方程的一個(gè)根,求m的值及另一個(gè)根;

(2)當(dāng)m為何值時(shí)方程有兩個(gè)不同的實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,方程2x3m+3y2n15是二元一次方程,則m+n_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知三條不同的直線a、b、c在同一平面內(nèi),下列四條命題:
①如果a∥b,a⊥c,那么b⊥c; ②如果b∥a,c∥a,那么b∥c;
③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.
其中真命題的是 . (填寫所有真命題的序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠A=34°,則∠A的補(bǔ)角為( 。
A.56°
B.146°
C.156°
D.166°

查看答案和解析>>

同步練習(xí)冊答案