【題目】如圖是由四個(gè)小正方形拼接成的L形圖案,按下列 要求畫出圖形。

(1)請你用兩種方法分別在L形圖案中添畫一個(gè)小正方形,使它成為軸對稱圖形;

(2)請你在L形圖案中添畫一個(gè)小正方形,使它成為中心對稱圖形。
3)請你在L}形圖案中移動(dòng)一個(gè)小正方形,使它成為既是中心對稱圖形,又是軸對稱圖形。

【答案】(1)見解析; (2)見解析; (3)見解析;

【解析】試題分析

(1)根據(jù)原圖結(jié)構(gòu),可按下列方法添加一個(gè)小正方形可使整個(gè)圖形成為軸對稱圖形,在下面左側(cè)添一個(gè)小正方形;在下面右側(cè)添一個(gè)小正方形;在上面右側(cè)添一個(gè)小正方形;

(2)根據(jù)原圖結(jié)構(gòu),在上面左側(cè)添一個(gè)小正方形可使整個(gè)圖形成為中心對稱圖形;

(3)根據(jù)原圖結(jié)構(gòu),可按下列方法移動(dòng)一個(gè)小正方形,可使整個(gè)圖形成為中心對稱圖形,將下面右側(cè)的小正方形移到第一列的下面;將第一列最上面的小正方形移到第二列的上面.

試題解析

(1)按下圖在的方式添加一個(gè)小正方形,整個(gè)圖形是軸對稱圖形:

(2)按下圖中的方式添加一個(gè)小正方形后整個(gè)圖形是中心對稱圖形:

(3)按下圖中的方式移動(dòng)一個(gè)小正方形后整個(gè)圖形是中心對稱圖形:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系內(nèi),二次函數(shù)圖象的頂點(diǎn)為A(1,﹣4),且過點(diǎn)B(3,0).

(1)求該二次函數(shù)的解析式;

(2)將該二次函數(shù)圖象向右平移幾個(gè)單位,可使平移后所得圖象經(jīng)過坐標(biāo)原點(diǎn)?并直接寫出平移后所得圖象與x軸的另一個(gè)交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是⊙O的內(nèi)接三角形,AE是⊙O的直徑,AF是⊙O的弦,AFBC,垂足為D.

1)求證:∠BAE=CAD.

2)若⊙O的半徑為4,AC=5,CD=2,求CF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖,在四邊形ABCD中,AB=ADB=D=90°,EF分別是邊BC、CD上的點(diǎn),且EAF=BAD求證:EF=BE+FD;

2)如圖,在四邊形ABCD中,AB=ADB+D=180°,E、F分別是邊BC、CD上的點(diǎn),且EAF=BAD,(1)中的結(jié)論是否仍然成立?

3)如圖,在四邊形ABCD中,AB=ADB+ADC=180°,E、F分別是邊BCCD延長線上的點(diǎn),且EAF=BAD,(1)中的結(jié)論是否仍然成立?若成立,請證明;若不成立,請寫出它們之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象經(jīng)過點(diǎn),且當(dāng)時(shí)所對應(yīng)的函數(shù)值相等.一次函數(shù)與二次函數(shù)的圖象分別交于, 兩點(diǎn),點(diǎn)在第一象限.

)求二次函數(shù)的表達(dá)式.

)連接,求的長.

)連接 是線段得中點(diǎn),將點(diǎn)繞點(diǎn)旋轉(zhuǎn)得到點(diǎn),連接 ,判斷四邊形的性狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各點(diǎn)中,在第四象限的點(diǎn)是(

A.-1,-4B.1,-4C.-1,0D.1,4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列現(xiàn)象中:①時(shí)針轉(zhuǎn)動(dòng),②電風(fēng)扇葉片的轉(zhuǎn)動(dòng),③轉(zhuǎn)呼啦圈,④傳送帶上的電視機(jī),其中是旋轉(zhuǎn)的有(  )
A.①②
B.②③
C.①④
D.③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是邊長為2,一個(gè)銳角等于60°的菱形紙片,小芳同學(xué)將一個(gè)三角形紙片的一個(gè)頂點(diǎn)與該菱形頂點(diǎn)D重合,按順時(shí)針方向旋轉(zhuǎn)三角形紙片,使它的兩邊分別交CB、BA(或它們的延長線)于點(diǎn)E、F,EDF=60°,當(dāng)CE=AF時(shí),如圖①小芳同學(xué)得出的結(jié)論是DE=DF。

(1)繼續(xù)旋轉(zhuǎn)三角形紙片,當(dāng)CEAF時(shí),如圖②,小芳的結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由。

(2)再次旋轉(zhuǎn)三角形紙片,當(dāng)點(diǎn)E、F分別在CB、BA的延長線上時(shí),如圖③,請寫出DE與DF的數(shù)量關(guān)系,并加以證明。

(3)連接EF,若△DEF的面積為y,CE=x,求y與x的關(guān)系式,并指出當(dāng)x為何值時(shí),y有最小值,最小值是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列二次函數(shù)中,其圖象對稱軸為x=﹣2的是( 。
A.y=(x+2)2
B.y=2x2﹣2
C.y=﹣2x2﹣2
D.y=2(x﹣2)2

查看答案和解析>>

同步練習(xí)冊答案