【題目】小明和爸爸周末步行去游泳館游泳,爸爸先出發(fā)了一段時間后小明才出發(fā),途中小明在離家米處的報亭休息了一段時間后繼續(xù)按原來的速度前往游泳館.爸爸、小明離家的距離(單位:米),單位:米)與小明所走時間(單位:分鐘)之間的函數(shù)關(guān)系如圖所示,請結(jié)合圖象信息解答下列問題:
分別求出爸爸離家的距離和小明到達(dá)報亭前離家的距離與時間之間的函數(shù)關(guān)系式;
求小明在報亭休息了多長時間遇到姍姍來遲的爸爸?
若游泳館離小明家米,請你通過計算說明誰先到達(dá)游泳館?
【答案】(1);;(2)小明在報亭休息了分鐘遇到姍姍來遲的爸爸;(3)爸爸先到達(dá)游泳館.
【解析】
(1)利用待定系數(shù)法即可解決問題;
(2)把y=1400代入解析式解答即可;
(3)根據(jù)題意分別計算出小明和爸爸到達(dá)游泳館的時間,進(jìn)而比較大小即可.
解:(1)設(shè)y1=k1x+b,
把和代入,
得
解得
解析式為
設(shè),
將代入,
得.
解得
解析式為
(2)把代入,解得
將代入
解得.
(分鐘).
答:小明在報亭休息了分鐘遇到姍姍來遲的爸爸.
(3)小明到達(dá)游泳館的時間為(分鐘).
設(shè)爸爸到達(dá)游泳館的時間為分鐘.
解得
爸爸先到達(dá)游泳館.
答:爸爸先到達(dá)游泳館.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“圓材埋壁”是我國古代著名的數(shù)學(xué)著作《九章算術(shù)》中的一個問題:“今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長六寸,問徑幾何?”用現(xiàn)代的數(shù)學(xué)語言表述是:“CD為的直徑,弦,垂足為E,CE=1寸,AB=10寸,求直徑CD的長”,依題意得CD的長為( )
A.12寸B.13寸C.24寸D.26寸
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xoy中,直線y=x+3交x軸于A點(diǎn),交y軸于B點(diǎn),過A、B兩點(diǎn)的拋物線y=-x2+bx+c交x軸于另一點(diǎn)C,點(diǎn)D是拋物線的頂點(diǎn).
(1)求此拋物線的解析式;
(2)點(diǎn)P是直線AB上方的拋物線上一點(diǎn),(不與點(diǎn)A、B重合),過點(diǎn)P作x軸的垂線交x軸于點(diǎn)H,交直線AB于點(diǎn)F,作PG⊥AB于點(diǎn)G.求出△PFG的周長最大值;
(3)在拋物線y=-x2+bx+c上是否存在除點(diǎn)D以外的點(diǎn)M,使得△ABM與△ABD的面積相等?若存在,請求出此時點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在△ABC中,AB=AC,∠BAC=α,直線l經(jīng)過點(diǎn)A(不經(jīng)過點(diǎn)B或點(diǎn)C),點(diǎn)C關(guān)于直線l的對稱點(diǎn)為點(diǎn)D,連接BD,CD.
(1)如圖1,
①求證:點(diǎn)B,C,D在以點(diǎn)A為圓心,AB為半徑的圓上;
②直接寫出∠BDC的度數(shù)(用含α的式子表示)為 ;
(2)如圖2,當(dāng)α=60°時,過點(diǎn)D作BD的垂線與直線l交于點(diǎn)E,求證:AE=BD;
(3)如圖3,當(dāng)α=90°時,記直線l與CD的交點(diǎn)為F,連接BF.將直線l繞點(diǎn)A旋轉(zhuǎn)的過程中,在什么情況下線段BF的長取得最大值?若AC=2a,試寫出此時BF的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:y=kx和拋物線C:y=ax2+bx+1.
(1)當(dāng)k=1,b=1時,拋物線C:y=ax2+bx+1的頂點(diǎn)在直線l:y=kx上,求a的值;
(2)若把直線l向上平移k2+1個單位長度得到直線r,則無論非零實(shí)數(shù)k取何值,直線r與拋物線C都只有一個交點(diǎn);
(i)求此拋物線的解析式;
(ii)若P是此拋物線上任一點(diǎn),過點(diǎn)P作PQ∥y軸且與直線y=2交于點(diǎn)Q,O為原點(diǎn),
求證:OP=PQ.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E為CD上一點(diǎn),若△ADE沿直線AE翻折,使點(diǎn)D落在BC邊上點(diǎn)D′處.F為AD上一點(diǎn),且DF=CD',EF與BD相交于點(diǎn)G,AD′與BD相交于點(diǎn)H.D′E∥BD,HG=4,則BD=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在每個邊長都為1的小正方形組成的網(wǎng)格中,點(diǎn)、、均為格點(diǎn).
(1)線段的長度等于______;
(2)若為線段上的動點(diǎn),以、為鄰邊的四邊形為平行四邊形,當(dāng)長度最小時,請你借助網(wǎng)格和無刻度的直尺畫出該平行四邊形,并簡要說明你的作圖方法:__________(不要求證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,點(diǎn)是邊上一點(diǎn)(不與點(diǎn)重合),點(diǎn)是延長線上一點(diǎn),且,連接.
(1)求證:
(2)連接,其中
①當(dāng)四邊形是菱形時,求線段與線段之間的距離;
②若點(diǎn)是的內(nèi)心,連接,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,DB∥AC,且DB=AC,E是AC的中點(diǎn).
(1)求證:四邊形BDEC是平行四邊形;
(2)連接AD、BE,△ABC添加一個條件: ,使四邊形DBEA是矩形(不需說明理由).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com