(2009•哈爾濱)已知:△ABC的高AD所在直線與高BE所在直線相交于點(diǎn)F.
(1)如圖1,若△ABC為銳角三角形,且∠ABC=45°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,求證:FG+DC=AD;
(2)如圖2,若∠ABC=135°,過點(diǎn)F作FG∥BC,交直線AB于點(diǎn)G,則FG、DC、AD之間滿足的數(shù)量關(guān)系是______;
(3)在(2)的條件下,若AG=,DC=3,將一個(gè)45°角的頂點(diǎn)與點(diǎn)B重合并繞點(diǎn)B旋轉(zhuǎn),這個(gè)角的兩邊分別交線段FG于M、N兩點(diǎn)(如圖3),連接CF,線段CF分別與線段BM、線段BN相交于P、Q兩點(diǎn),若NG=,求線段PQ的長.

【答案】分析:(1)首先證明∠CBE=∠DAC,∠AGF=∠BAD可推出FA=FG;
(2)與(1)證明方法同理;
(3)首先證明△FDC為等腰直角三角形,然后證明四邊形DFHB為矩形.根據(jù)三角函數(shù)的計(jì)算得出.
解答:證明:
(1)∵∠ADB=90°∠ABC=45°,
∴∠BAD=∠ABC=45°,
∴AD=BD
∵∠BEC=90°,
∴∠CBE+∠C=90°,
∵∠DAC+∠C=90°,
∴∠CBE=∠DAC,
∵GF∥BD,
∴∠AGF=∠ABC=45°,
∴∠AGF=∠BAD,
∴FA=FG,
∴FG+DC=FA+DF=AD;

解:(2)FG-DC=AD;

(3)如圖,
∵∠ABC=135°,
∴∠ABD=45°,
∵∠ADB=90°,
∴∠DAB=∠DBA=45°,
∴AD=BD,
∵FG∥BC,
∴∠G=∠DBA=∠DAB,
∴AF=FG
∴AG=5,F(xiàn)G2+AF2=AG2
∴FG=AF=5
∵DC=3由(2)知FG-DC=AD,
∴AD=BD=2,BC=1,DF=3,
∴△FDC為等腰直角三角形
∴FC=
分別過B,N作BH⊥FG于點(diǎn)H,NK⊥BG于點(diǎn)K,
∴四邊形DFHB為矩形,
∴HF=BD=2  BH=DF=3,
∴BH=HG=3,
∴BG=
∵sin∠G=,
∴NK=×=
∴BK=
∵∠MBN=∠HBG=45°,
∴∠MBH=∠NBK,
∵∠MHB=∠NKB=90°,
∴△MBH∽△NBK
,
∴MH=1,
∴FM=1,
∵BC∥FG,
∴∠BCF=∠CFN,
∵∠BPC=∠MPF CB=FM,
∴△BPC≌△MPF,
∴PC=PF=FC=,
∵∠BQC=∠NQF,
∴△BCQ∽△NFQ,

,
∴CQ=FC==,
∴PQ=CP-CQ=
點(diǎn)評:本題考查直角三角形的性質(zhì),矩形的性質(zhì),全等三角形的判定以及綜合分析、解答問題的能力,涉及到三角函數(shù)的計(jì)算,難度偏難.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•哈爾濱)如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(-3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H.
(1)求直線AC的解析式;
(2)連接BM,如圖2,動點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動,設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當(dāng)t為何值時(shí),∠MPB與∠BCO互為余角,并求此時(shí)直線OP與直線AC所夾銳角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年云南省昆明市安寧市青龍學(xué)校中考數(shù)學(xué)模擬試卷(一)(解析版) 題型:選擇題

(2009•哈爾濱)點(diǎn)P(1,3)在反比例函數(shù)y=(k≠0)的圖象上,則k的值是( )
A.
B.3
C.-
D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年初中數(shù)學(xué)第一輪復(fù)習(xí)教學(xué)案例.4.4.反比例函數(shù)(解析版) 題型:選擇題

(2009•哈爾濱)點(diǎn)P(1,3)在反比例函數(shù)y=(k≠0)的圖象上,則k的值是( )
A.
B.3
C.-
D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•哈爾濱)如圖1,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),四邊形ABCO是菱形,點(diǎn)A的坐標(biāo)為(-3,4),點(diǎn)C在x軸的正半軸上,直線AC交y軸于點(diǎn)M,AB邊交y軸于點(diǎn)H.
(1)求直線AC的解析式;
(2)連接BM,如圖2,動點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動,設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式(要求寫出自變量t的取值范圍);
(3)在(2)的條件下,當(dāng)t為何值時(shí),∠MPB與∠BCO互為余角,并求此時(shí)直線OP與直線AC所夾銳角的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省哈爾濱市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2009•哈爾濱)點(diǎn)P(1,3)在反比例函數(shù)y=(k≠0)的圖象上,則k的值是( )
A.
B.3
C.-
D.-3

查看答案和解析>>

同步練習(xí)冊答案