【題目】如圖,在四邊形ABCD中,∠B=60°,∠D=30°,AB=BC.
(1)求∠A+∠C的度數(shù);
(2)連接BD,探究AD,BD,CD三者之間的數(shù)量關系,并說明理由;
(3)若AB=1,點E在四邊形ABCD內部運動,且滿足AE2=BE2+CE2,求點E運動路徑的長度.
【答案】(1)270°;(2)DB2=DA2+DC2;(3).
【解析】
(1)利用四邊形內角和定理計算即可;
(2)連接BD.以BD為邊向下作等邊三角形△BDQ.想辦法證明△DCQ是直角三角形即可解決問題;
(3)如圖3中,連接AC,將△ACE繞點A順時針旋轉60°得到△ABR,連接RE.想辦法證明∠BEC=150°即可解決問題.
(1)如圖1中,
在四邊形ABCD中,
∵∠A+∠B+∠C+∠D=360°,∠B=60°,∠C=30°,
∴∠A+∠C=360°﹣60°﹣30°=270°;
(2)如圖2中,結論:DB2=DA2+DC2,
理由:連接BD,以BD為邊向下作等邊三角形△BDQ,
∵∠ABC=∠DBQ=60°,
∴∠ABD=∠CBQ,
∵AB=BC,DB=BQ,
∴△ABD≌△CBQ,
∴AD=CQ,∠A=∠BCQ,
∵∠A+∠BCD=∠BCQ+∠BCD=270°,
∴∠DCQ=90°,
∴DQ2=DC2+CQ2,
∵CQ=DA,DQ=DB,
∴DB2=DA2+DC2;
(3)如圖3中,
連接AC,將△ACE繞點A順時針旋轉60°得到△ABR,連接RE,則△AER是等邊三角形,
∵EA2=EB2+EC2,EA=RE,EC=RB,
∴RE2=RB2+EB2,
∴∠EBR=90°,
∴∠RAE+∠RBE=150°,
∴∠ARB+∠AEB=∠AEC+∠AEB=210°,
∴∠BEC=150°,
∴點E的運動軌跡在O為圓心的圓上,在⊙O上取一點K,連接KB,KC,OB,OC,
∵∠K+∠BEC=180°,
∴∠K=30°,∠BOC=60°,
∵OB=OC,
∴△OBC是等邊三角形,
∴點E的運動路徑.
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.
(1)求證:AB=AC;
(2)若AB=4,BC=,求CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】正方形、正方形和正方形的位置如圖所示,點在線段上,正方形的邊長為4,則的面積為( )
A. 10 B. 12 C. 14 D. 16
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,海中有一小島P,在距小島P的海里范圍內有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著移動互聯(lián)網(wǎng)的快速發(fā)展,基于互聯(lián)網(wǎng)的共享單車應運而生.為了解某小區(qū)居民使用共享單車的情況,某研究小組隨機采訪該小區(qū)的10位居民,得到這10位居民一周內使用共享單車的次數(shù)分別為:17,12,15,20,17,0,7,26,17,9.
(1)這組數(shù)據(jù)的中位數(shù)是 ,眾數(shù)是 ;
(2)計算這10位居民一周內使用共享單車的平均次數(shù);
(3)若該小區(qū)有200名居民,試估計該小區(qū)居民一周內使用共享單車的總次數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°,以線段AB為邊向外作等邊△ABD,點E是線段AB的中點,連接CE并延長交線段AD于點F.
(1)求證:四邊形BCFD為平行四邊形;
(2)若AB=6,求平行四邊形BCFD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知如圖,拋物線的頂點D的坐標為(1,-4),且與y軸交于點
C(0,3)
求該函數(shù)的關系式;
求改拋物線與x軸的交點A,B的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一名在校大學生利用“互聯(lián)網(wǎng)+”自主創(chuàng)業(yè),銷售一種產(chǎn)品,這種產(chǎn)品的成本價10元/件,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于16元/件,市場調查發(fā)現(xiàn),該產(chǎn)品每天的銷售量(件與銷售價(元/件)之間的函數(shù)關系如圖所示.
(1)求與之間的函數(shù)關系式,并寫出自變量的取值范圍;
(2)求每天的銷售利潤W(元與銷售價(元/件)之間的函數(shù)關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c的圖象對稱軸為x=,圖象交x軸于A,B,交y軸于C(0,-3),且AB=5,直線y=kx+b(k>0)與二次函數(shù)圖象交于M,N(M在N的右邊),交y軸于P.
(1)求二次函數(shù)圖象的解析式;
(2)若b=-5,且△CMN的面積為3,求k的值;
(3)若b=-3k,直線AN交y軸于Q,求的值或取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com