如圖,在梯形ABCD中,ADBC,E是BC的中點,AD=5,BC=12,CD=4
2
,∠C=45°,點P是BC邊上一動點,設(shè)PB的長為x.
(1)當(dāng)x的值為______時,以點P、A、D、E為頂點的四邊形為直角梯形;
(2)當(dāng)x的值為______時,以點P、A、D、E為頂點的四邊形為平行四邊形;
(3)點P在BC邊上運動的過程中,以P、A、D、E為頂點的四邊形能否構(gòu)成菱形?試說明理由.
(1)如圖,分別過A、D作AM⊥BC于M,DN⊥CB于N,
則四邊形AMND是矩形,
∴AM=DN,AD=MN=5,
而CD=4
2
,∠C=45°,
∴DN=CN=CD•sin∠C=4
2
×
2
2
=4=AM,
∴BM=CB-CN-MN=3,
若點P、A、D、E為頂點的四邊形為直角梯形,
則∠APC=90°或∠DEB=90°,
當(dāng)∠APC=90°時,
∴P與M重合,
∴BP=BM=3;
當(dāng)∠DPB=90°時,P與N重合,
∴BP=BN=8;
故當(dāng)x的值為3或8時,以點P、A、D、E為頂點的四邊形為直角梯形;

(2)若以點P、A、D、E為頂點的四邊形為平行四邊形,那么AD=PE,
有兩種情況:①當(dāng)P在E的左邊,
∵E是BC的中點,
∴BE=6,
∴BP=BE-PE=6-5=1;
②當(dāng)P在E的右邊,
BP=BE+PE=6+5=11;
故當(dāng)x的值為1或11時,以點P、A、D、E為頂點的四邊形為平行四邊形;

(3)由(2)知,①當(dāng)BP=1時,此時CN=DN=4,NE=6-4=2,
∴DE=
DN2+NE2
=
42+22
=2
5
≠AD,故不能構(gòu)成菱形.
②當(dāng)BP′=11時,以點P′、A、D、E為頂點的四邊形是平行四邊形
∴EP′=AD=5,
過D作DN⊥BC于N,
∵CD=4
2
,∠C=45°,
則DN=CN=4,
∴NP′=BP′-BN=BP′-(BC-CN)=11-12+4=3.
∴DP′=
DN2+NP2
=
42+32
=5,
∴EP′=DP′,
故此時?P′DAE是菱形.
即以點P、A、D、E為頂點的四邊形能構(gòu)成菱形;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知在梯形ABCD中,ADBC,BD⊥CD,BD平分∠ABC,且∠C=60°,CD=20,試求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,等腰梯形ABCD中,ADBC,AB=DC,點P是腰DC上的一個動點(P與D、C不重合),點E、F、G分別是線段BC、PC、BP的中點.
(1)試探索四邊形EFPG的形狀,并說明理由;
(2)若∠A=120°,AD=2,DC=4,當(dāng)PC為何值時,四邊形EFPG是矩形并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,等邊三角形ABC,點E是AB上一點,點D在CB的延長線上,且ED=EC,EFAC交BC于點F.
(1)試說明四邊形AEFC是等腰梯形;
(2)請判斷AE與DB的數(shù)量關(guān)系,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,已知ADBC,AB=CD,延長線段CB到E,使BE=AD,連接AE、AC.
(1)求證:△ABE≌△CDA;
(2)若∠DAC=40°,求∠EAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,梯形ABCD中ADBC,對角線AC、BD交于點O,AD:BC=1:3,S△AOD=2,則梯形ABCD的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,在梯形ABCD中,ADBC,∠B=90°,AD=24cm,BC=26cm,動點P從點A出發(fā)沿AD方向向點D以1cm/s的速度運動,動點Q從點C開始沿著CB方向向點B以3cm/s的速度運動.點P、Q分別從點A和點C同時出發(fā),當(dāng)其中一點到達(dá)端點時,另一點隨之停止運動.
(1)經(jīng)過多長時間,四邊形PQCD是平行四邊形?
(2)經(jīng)過多長時間,四邊形PQBA是矩形?
(3)經(jīng)過多長時間,四邊形PQCD是等腰梯形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如果直角梯形的一條底邊長為7厘米,兩腰長分別為8厘米和10厘米,那么這個梯形的面積是______平方厘米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

等腰梯形的上底長為2,下底長為10,高為3,則它的腰長為(  )
A.4B.5C.7D.10

查看答案和解析>>

同步練習(xí)冊答案