在Rt△ABC中,∠C=90°,BC=3,AC=4,點(diǎn)D在斜邊AB上,且滿足DC2=DA·DB;則DB=     
1.8或2.5.

試題分析:由勾股定理可得:AB=5;如圖①,當(dāng)CD⊥AB時,則有△BCD∽△CAD,所以,即CD2=AD·CD,由三角形面積公式求得CD=3×4÷5=2.4,在Rt△BCD中,由勾股定理可知;如圖②,當(dāng)D是斜邊AB的中點(diǎn)時,則有AD=BD=CD,所以CD2=AD·BD,此時,DB=2.5.所以DB的長度是1.8或2.5.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,在⊙O中,直徑AB⊥CD于點(diǎn)E,連接BC.

(1)線段BC、BE、AB應(yīng)滿足的數(shù)量關(guān)系是      
(2)若點(diǎn)P是優(yōu)弧上一點(diǎn)(不與點(diǎn)C、A、D重合),連接BP與CD交于點(diǎn)G.
請完成下面四個任務(wù):
①根據(jù)已知畫出完整圖形,并標(biāo)出相應(yīng)字母;
②在正確完成①的基礎(chǔ)上,猜想線段BC、BG、BP應(yīng)滿足的數(shù)量關(guān)系是       ;
③證明你在②中的猜想是正確的;
④點(diǎn)P′恰恰是你選擇的點(diǎn)P關(guān)于直徑AB的對稱點(diǎn),那么按照要求畫出圖形后在②中的猜想仍然正確嗎?    ;(填正確或者不正確,不需證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在△ABC中,∠ABC=2∠C,BD平分∠ABC,且,,求AB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某同學(xué)想測量旗桿的高度,他在某一時刻測得1米長的竹竿豎直放置時影長1.5米,在同一時刻測量旗桿的影長時,因旗桿靠近一樓房,影子不全落在地面上,有一部分落在墻上,他測得落在地面上的影長為21米,留在墻上的影高為2米,求旗桿的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)E是矩形ABCD中CD邊上一點(diǎn),△BCE沿BE折疊為△BFE,點(diǎn)F落在AD上.

(1)求證:△ABF∽△DFE
(2)若△BEF也與△ABF相似,請求出的值 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

在同一時刻,太陽光下身高1.6m的小強(qiáng)的影長是1.2m,學(xué)校旗桿的影長是15m,則旗桿高為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在△ABC中,D、E分別是AB、AC邊上的點(diǎn),且DE//BC,如果DE:BC=3:5,那么AE:AC的值為(       )

A.        B.       C.      D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在等邊△中,,當(dāng)直角三角板角的頂點(diǎn)上移動時,斜邊始終經(jīng)過邊的中點(diǎn),設(shè)直角三角板的另一直角邊相交于點(diǎn)E.設(shè),,那么之間的函數(shù)圖象大致是(   )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

,那么          .

查看答案和解析>>

同步練習(xí)冊答案