如圖,平行四邊形中,的平分線(xiàn),,則的長(zhǎng)是(      )
A.1B.1.5C.2D.3
C

試題分析:根據(jù)平行四邊形的對(duì)邊相等,得:CD=AB=5,AD=BC=3.
根據(jù)平行四邊形的對(duì)邊平行,得:CD∥AB,
∴∠AED=∠BAE,
又∠DAE=∠BAE,
∴∠DAE=∠AED.
∴ED=AD=3,
∴EC=CDED=53=2.
故選C.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

把一張矩形紙片ABCD按如圖方式折疊,使頂點(diǎn)B和點(diǎn)D重合,折痕為EF.若AB = 3 cm,BC =4 cm.
(1)求線(xiàn)段DF的長(zhǎng);
(2)連接BE,求證:四邊形BFDE是菱形;
(3)求線(xiàn)段EF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一張矩形紙片,剪下一個(gè)正方形,剩下一個(gè)矩形,稱(chēng)為第一次操作;在剩下的矩形紙片中再剪下一個(gè)正方形,剩下一個(gè)矩形,稱(chēng)為第二次操作;;若在第n次操作后,剩下的矩形為正方形,則稱(chēng)原矩形為n階奇異矩形.如圖1,矩形ABCD中,若AB=2,BC=6,則稱(chēng)矩形ABCD為2階奇異矩形.

(1)判斷與操作:如圖2,矩形ABCD長(zhǎng)為5,寬為2,它是奇異矩形嗎?如果是,請(qǐng)寫(xiě)出它是幾階奇異矩形,并在圖中畫(huà)出裁剪線(xiàn);如果不是,請(qǐng)說(shuō)明理由.
(2)探究與計(jì)算:已知矩形ABCD的一邊長(zhǎng)為20,另一邊長(zhǎng)為a(a<20),且它是3階奇異矩形,請(qǐng)畫(huà)出矩形ABCD及裁剪線(xiàn)的示意圖,并在圖的下方寫(xiě)出a的值.
(3)歸納與拓展:已知矩形ABCD兩鄰邊的長(zhǎng)分別為b,c(b<c),且它是4階奇異矩形,則b:c=___________________________________________(寫(xiě)出所有值).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖把一個(gè)長(zhǎng)方形的紙片對(duì)折兩次,然后剪下一個(gè)角,為了得到一個(gè)銳角為60°的菱形,剪口與折痕所成的角α的度數(shù)應(yīng)為
A.15°或30°B.30°或45°
C.45°或60°D.30°或60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

矩形、菱形與正方形都具有的性質(zhì)是 (    )
A.對(duì)角線(xiàn)互相垂直B.對(duì)角線(xiàn)互相平分
C.對(duì)角線(xiàn)平分一組對(duì)角D.對(duì)角線(xiàn)相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列條件中,不能判定四邊形ABCD是平行四邊形的是 (  ).
A.∠A=∠C,∠B=∠D
B.∠A=∠B=∠C=90°
C.∠A+∠B=180°,∠B+∠C=180°
D.∠A+∠B=180°,∠C+∠D=180°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,矩形ABCD中,AD=2AB,E、F分別是AD、BC上的點(diǎn),且線(xiàn)段EF過(guò)矩形對(duì)角線(xiàn)AC的中點(diǎn)O,且EF⊥AC,PF∥AC,則EF:PE的值是       

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

下面圖形都是由同樣大小的平行四邊形按一定的規(guī)律組成,其中,第①個(gè)圖形一共有1個(gè)平行四邊形,第②個(gè)圖形一共有5個(gè)平行四邊形,第③個(gè)圖形一共有11個(gè)平行四邊形,……,則第⑥個(gè)圖形中平行四邊形的個(gè)數(shù)為               

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,過(guò)矩形ABCD的對(duì)角線(xiàn)BD上一點(diǎn)K分別作矩形兩邊的平行線(xiàn)MN與PQ,那么圖中矩形AMKP的面積S1與矩形QCNK的面積S2的關(guān)系是S1       S2(填“>”或“<”或“=”)

查看答案和解析>>

同步練習(xí)冊(cè)答案