【題目】已知矩形中,,點(diǎn)、分別在邊上,將四邊形沿直線翻折,點(diǎn)、的對稱點(diǎn)分別記為.

1)當(dāng)時(shí),若點(diǎn)恰好落在線段上,求的長;

2)設(shè),若翻折后存在點(diǎn)落在線段上,則的取值范圍是______.

【答案】1;(2.

【解析】

1)過,延長于點(diǎn),如圖1,易證,于是設(shè),則,可得,然后在中根據(jù)勾股定理即可求出a的值,進(jìn)而可得的長,設(shè),則可用n的代數(shù)式表示,連接FB、,如圖2,根據(jù)軸對稱的性質(zhì)易得,再在中,根據(jù)勾股定理即可求出n的值,于是可得結(jié)果;

2)仿(1)題的思路,在中,利用勾股定理可得關(guān)于xm的方程,然后利用一元二次方程的根的判別式和二次函數(shù)的知識(shí)即可求出m的范圍,再結(jié)合點(diǎn)的特殊位置可得m的最大值,從而可得答案.

解:(1)∵四邊形ABCD是矩形,∴ABCD,過,延長于點(diǎn),如圖1,則ABCDQH,∴,∴,

設(shè),則,∴.

中,∵,∴,解得:(舍去).

,∴,

設(shè),則,連接FB,如圖2,則,

中,由勾股定理,得:,∴,解得:,∴;

2)如圖1,∵,∴,設(shè),則,∴.

中,∵,∴,

整理,得:,

若翻折后存在點(diǎn)落在線段上,則上述方程有實(shí)數(shù)根,即△≥0,∴,整理,得:,

由二次函數(shù)的知識(shí)可得:,或(舍去),

,當(dāng)x=m時(shí),方程即為:,解得:,

又∵當(dāng)點(diǎn)與點(diǎn)C重合時(shí),m的值達(dá)到最大,即當(dāng)x=0時(shí),,解得:m=1.

m的取值范圍是:.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BD是半圓O的直徑,ABD延長線上的一點(diǎn),BCAE,交AE的延長線于點(diǎn)C,交半圓O于點(diǎn)F,且E為弧DF的中點(diǎn).

1)求證:AC是半圓O的切線;

2)若BC8,BE6,求半徑的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABCD,BE平分∠ABC,DE平分∠ADC,∠BAD70°,∠BCD40°,則∠BED的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC中,ABAC2,∠BAC120°,DBC邊上的點(diǎn),將DAD點(diǎn)逆時(shí)針旋轉(zhuǎn)120°得到DE

1)如圖1,若ADDC,則BE的長為   ,BE2+CD2AD2的數(shù)量關(guān)系為   ;

2)如圖2,點(diǎn)DBC邊山任意一點(diǎn),線段BE、CD、AD是否依然滿足(1)中的關(guān)系,試證明;

3M為線段BC上的點(diǎn),BM1,經(jīng)過B、E、D三點(diǎn)的圓最小時(shí),記D點(diǎn)為D1,當(dāng)D點(diǎn)從D1處運(yùn)動(dòng)到M處時(shí),E點(diǎn)經(jīng)過的路徑長為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了深入學(xué)習(xí)社會(huì)主義核心價(jià)值觀,對本校學(xué)生進(jìn)行了一次相關(guān)知識(shí)的測試,隨機(jī)抽取了部分學(xué)生的測試成績進(jìn)行統(tǒng)計(jì)(根據(jù)成績分為、、五個(gè)組,表示測試成績,組:;組:組:;組:組:),通過對測試成績的分析,得到如圖所示的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息解答以下問題:

1)抽取的學(xué)生共有______人,請將兩幅統(tǒng)計(jì)圖補(bǔ)充完整;

2)抽取的測試成績的中位數(shù)落在______組內(nèi);

3)本次測試成績在80分以上(含80分)為優(yōu)秀,若該校初三學(xué)生共有1200人,請估計(jì)該校初三測試成績?yōu)閮?yōu)秀的學(xué)生有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的一條弦,點(diǎn)C⊙O上一動(dòng)點(diǎn),∠ACB=30°,點(diǎn)EF分別是AC、BC的中點(diǎn),直線EF⊙O交于G、H兩點(diǎn),⊙O的半徑為8,GE+FH的最大值為(

A.8B.12C.16D.20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊ABC中,AB12.以AB為直徑的半⊙O與邊AC相交于點(diǎn)D.過點(diǎn)DDEBC,垂足為E;過點(diǎn)EEFAB,垂足為F,連接DF

1)求證:DE是⊙O的切線;

2)求EF的長;

3)求sinEFD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB的直徑,BC的切線,弦ADOC,直線CD交的BA延長線于點(diǎn)E,連接BD.下列結(jié)論:①CD的切線;②;③;④.其中正確結(jié)論的個(gè)數(shù)有(  )

A. 4個(gè)B. 3個(gè)C. 2個(gè)D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,AB=AC,點(diǎn)D、E分別在邊BC、DC上,AB2 =BE · DC ,DE:EC=3:1 F是邊AC上的一點(diǎn),DFAE交于點(diǎn)G

1)找出圖中與ACD相似的三角形,并說明理由;

2)當(dāng)DF平分ADC時(shí),求DG:DF的值;

3)如圖,當(dāng)∠BAC=90°,且DFAE時(shí),求DG:DF的值.

查看答案和解析>>

同步練習(xí)冊答案