如圖,在平面直角坐標系中,拋物線的頂點A的坐標為(3,15),且過點(-2,10),對稱軸AB交軸于點B,點E是線段AB上一動點,以EB為邊在對稱軸右側作矩形EBCD,使得點D恰好落在拋物線上,點D′是點D關于直線EC的軸對稱點.

(1)求拋物線的解析式;
(2)若點D′恰好落在軸上的點(0,6)時,求此時D點的坐標;
(3)直線CD′交對稱軸AB于點F,
①當點D′在對稱軸AB的左側時,且△ED′F∽△CDE,求出DE:DC的值;
②連結B D′,是否存在點E,使△E D′B為等腰三角形?若存在,請直接寫出BE:BC的值,若不存在請說明理由.

(1);(2)(8,10); (3)①;②.

解析試題分析:(1)由已知,應用待定系數(shù)法設頂點式求解;
(2)根據勾股定理和軸對稱的性質列方程組求解;
(3)①由勾股定理和相似三角形的性質列式求解;
②由①可知△ED′F≌△CBF時, D′F=BF,從而得出結論.
試題解析:(1)∵拋物線的頂點A的坐標為(3,15),
∴可設拋物線的解析式為.
∵拋物線過點(-2,10), ∴.解得.
∴拋物線的解析式為,即.
(2)設D(x,y),則E(3, y), DE="x-3," DC=y.
由D′(0,6),根據勾股定理,得: D′C=, D′E=,
根據軸對稱的性質,有D′C="DC," D′E= DE,即,解得.
∴此時D點的坐標為(8,10).

(3)①易證△ED′F≌△CBF,則D′F=BF.
設D′C=DC=a,D′E=DE=b,D′F=BF=c,
在Rt△CBF中,由勾股定理,得:CF2=BF2+D′C2,即(D′C- D′F)2=BF2+D′C2.
,整理,得.
∵△ED′F∽△CDE,∴,即,即,即,即.
∴DE:DC=.
②存在,由①可知BE:BC=.

考點:1.動點問題;2.二次函數(shù)的性質;3.勾股定理;4. 軸對稱的性質;5.全等和相似三角形的判定和性質.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:解答題

跳繩時,繩甩到最高處時的形狀是拋物線.正在甩繩的甲.乙兩名同學拿繩的手間距AB為6米,到地面的距離AO和BD均為0.9米,身高為1.4米的小麗站在距點O的水平距離為1米的點F處,繩子甩到最高處時剛好通過她的頭頂點E.以點O為原點建立如圖所示的平面直角坐標系, 設此拋物線的解析式為y=ax2+bx+0.9.
(1)求該拋物線的解析式 .

(2)如果小華站在OD之間,且離點O的距離為3米,當繩子甩到最高處時剛好通過他的頭頂,小華的身高為               ;
(3)如果身高為1.4米的小麗站在OD之間,且離點O的距離為t米, 繩子甩到最高處時超過她的頭頂,請結合圖像,寫出t的取值范圍                  

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

正常水位時,拋物線拱橋下的水面寬為BC=20m,水面上升3m達到該地警戒水位DE時,橋下水面寬為10m.若以BC所在直線為x軸,BC的垂直平分線為y軸,建立如圖所示的平面直角坐標系.

(1)求橋孔拋物線的函數(shù)關系式;
(2)如果水位以0.2m/h的速度持續(xù)上漲,那么達到警戒水位后,再過多長時間此橋孔將被淹沒;
(3)當達到警戒水位時,一艘裝有防汛器材的船,露出水面部分的寬為4m,高為0.75m,通過計算說明該船能否順利通過此拱橋?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在某市開展的環(huán)境創(chuàng)優(yōu)活動中,某居民小區(qū)要在一塊靠墻(墻長15米)的空地上修建一個矩形花園ABCD,花園的一邊靠墻,另三邊用總長為40m的柵欄圍成,若設花園與墻平行的一邊長為x(m),花園的面積為y(m2)。
(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)滿足條件的花園面積能達到200m2嗎?若能,求出此時x的值,若不能,說明理由:
(3)根據(1)中求得的函數(shù)關系式,判斷當x取何值時,花園的面積最大?最大面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

二次函數(shù)的圖象如圖所示,根據圖象解答下列問題:

(1)寫出方程的兩個根.
(2)寫出不等式的解集.
(3)寫出的增大而減小的自變量的取值范圍.
(4)若方程有兩個不相等的實數(shù)根,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

在平面直角坐標系xOy中,二次函數(shù)y=-x2+(m-1)x+4m的圖象與x軸負半軸交于點A,與y軸交于點B(0,4),已知點E(0,1).

(1)求m的值及點A的坐標;
(2)如圖,將△AEO沿x軸向右平移得到△A′E′O′,連結A′B、BE′.
①當點E′落在該二次函數(shù)的圖象上時,求AA′的長;
②設AA′=n,其中0<n<2,試用含n的式子表示A′B2+BE′2,并求出使A′B2+BE′2取得最小值時點E′的坐標;
③當A′B+BE′取得最小值時,求點E′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知函數(shù).
(1)m=       時,函數(shù)圖像與x軸只有一個交點;
(2)m為何值時,函數(shù)圖像與x軸沒有交點;
(3)若函數(shù)圖像與x軸交于A、B兩點,與y軸交于點C,且△ABC的面積為4,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知拋物線軸相交于,兩點(點在點的左側),與軸相交于點

(1)點的坐標為        ,點的坐標為        
(2)在軸的正半軸上是否存在點,使以點,為頂點的三角形與相似?若存在,求出點的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知二次函數(shù)y1=ax2+bx-3的圖象經過點A(2,-3),B(-1,0),與y軸交于點C,與x軸另一交點交于點D.

(1)求二次函數(shù)的解析式;
(2)求點C、點D的坐標;
(3)若一條直線y2,經過C、D兩點,請直接寫出y1>y2時,的取值范圍.

查看答案和解析>>

同步練習冊答案