【題目】為了了解某校學(xué)生的身高狀況,隨機(jī)對(duì)該校男生、女生的身高進(jìn)行抽樣調(diào)查.已知抽取的樣本中,男生、女生的人數(shù)相同,根據(jù)所得數(shù)據(jù)繪制如圖所示的統(tǒng)計(jì)圖表.
已知女生身高在A組的有8人,根據(jù)圖表中提供的信息,回答下列問題:
(1)補(bǔ)充圖中的男生身高情況直方圖,男生身高的中位數(shù)落在_______組(填組別字母序號(hào));
(2)在樣本中,身高在150≤x<155之間的人數(shù)共有_______人,身高人數(shù)最多的在____組(填組別序號(hào));
(3)已知該校共有男生400人,女生420人,請估計(jì)身高不足160的學(xué)生約有多少人?
【答案】(1)補(bǔ)充直方圖見解析,D;(2)(2)16,C;(3)估計(jì)身高不足160的學(xué)生約有516人
【解析】
(1)利用女生身高在A組的人數(shù)除以所占百分比計(jì)算出女生的總?cè)藬?shù)即為男生的總?cè)藬?shù),用總?cè)藬?shù)減去A、C、D、E的人數(shù)求出B組的人數(shù),即可補(bǔ)全條形圖;根據(jù)中位數(shù)的定義即可得出男生身高的中位數(shù)落在D組;
(2)將位于這一小組內(nèi)的頻數(shù)相加即可求得結(jié)果;
(3)分別用樣本中男女生身高不足160的百分比乘以男女生的人數(shù),相加即可得解.
解:(1)女生身高在A組的有8人,所占的百分比為20%,
所以女生的總?cè)藬?shù)為:8÷20%=40人,
所以男生總?cè)藬?shù)也為40人,
所以男生身高在B組的有:40-2-12-14-8=4人,
補(bǔ)全條形圖如圖所示:
∵男生總?cè)藬?shù)為40人,
∴中位數(shù)是第20和第21人的平均數(shù),
∴男生身高的中位數(shù)落在D組;
(2)在樣本中,身高在150≤x<155之間的人數(shù)共有4+12=16人,身高人數(shù)最多的在C組,
故答案為:16、C;
(3)400×+420×(20%+30%+30%)=516.
答:估計(jì)身高不足160的學(xué)生約有516人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知BC∥OA,∠B=∠A=100°,試回答下列問題:
(1)如圖①所示,試說明OB∥AC;
(2)如圖②,若點(diǎn)E,F在BC上,且滿足∠FOC=∠AOC,并且OE平分∠BOF.則∠EOC的度數(shù)等于________(在橫線上填上答案即可);
(3)在(2)的條件下,若平行移動(dòng)AC,如圖③,那么∠OCB∶∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個(gè)比值;
(4)在(3)的條件下,在平行移動(dòng)AC的過程中,若使∠OEB=∠OCA,此時(shí)∠OCA的度數(shù)等于________(在橫線上填上答案即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD四條邊上的中點(diǎn)分別為E、F、G、H,順次連接EF、FG、GH、HE,得到四邊形EFGH(即四邊形ABCD的中點(diǎn)四邊形).
(1)四邊形EFGH的形狀是_____,證明你的結(jié)論;
(2)當(dāng)四邊形ABCD的對(duì)角線滿足_____條件時(shí),四邊形EFGH是矩形(不證明)
(3)你學(xué)過的哪種特殊四邊形的中點(diǎn)四邊形是矩形?_____(不證明)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A點(diǎn)的初始位置位于數(shù)軸上表示1的點(diǎn),現(xiàn)對(duì)A點(diǎn)做如下移動(dòng):第1次向左移動(dòng)3個(gè)單位長度至B點(diǎn),第2次從B點(diǎn)向右移動(dòng)6個(gè)單位長度至C點(diǎn),第3次從C點(diǎn)向左移動(dòng)9個(gè)單位長度至D點(diǎn),第4次從D點(diǎn)向右移動(dòng)12個(gè)單位長度至E點(diǎn),…,依此類推.這樣第_____次移動(dòng)到的點(diǎn)到原點(diǎn)的距離為2018.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系,A(-2,0),B(0,3),點(diǎn)M在直線y=x 上,且SΔMAB=6,則點(diǎn)M的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,BG⊥AE,垂足為G.若BG=4 ,則△CEF的面積是( )
A.
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的邊AB=8,∠B=60°,P是AB上一點(diǎn),BP=3,Q是CD邊上一動(dòng)點(diǎn),將梯形APQD沿直線PQ折疊,A的對(duì)應(yīng)點(diǎn)A′.當(dāng)CA′的長度最小時(shí),CQ的長為( )
A.5
B.7
C.8
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD,AB∥DC,∠B=55°,∠1=85°,∠2=40°
(1)求∠D的度數(shù);
(2)求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線AC和BD交于點(diǎn)O,則下列不能判斷四邊形ABCD是平行四邊形的條件是( 。
A. OA=OC,AD∥BC B. ∠ABC=∠ADC,AD∥BC
C. AB=DC,AD=BC D. ∠ABD=∠ADB,∠BAO=∠DCO
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com