如圖,在△ABC中,∠C=2∠B,AD是△ABC的角平分線,∠1=∠B.
求證:AB=AC+CD.
見(jiàn)解析

試題分析:由∠1=∠B可根據(jù)等角對(duì)等邊可得DE=BE,根據(jù)三角形外角的性質(zhì)可得∠AED=2∠B,由∠C=2∠B可得∠AED=∠C,再結(jié)合AD平分∠CAB,公共邊AD可得△CAD≌△EAD,從而可以證得結(jié)論。
∵∠1=∠B
∴DE=BE,∠AED=2∠B
∵∠C=2∠B
∴∠AED=∠C
∵AD平分∠CAB
∴∠CAD=∠BAD
又AD=AD
∴△CAD≌△EAD
∴AE=AC,CD=DE=EB
∴AB=AE+EB=AC+CD.
點(diǎn)評(píng):解答本題的關(guān)鍵是掌握三角形外角的性質(zhì):三角形的一個(gè)外角等于不相鄰的兩個(gè)內(nèi)角的和。同時(shí)熟練掌握全等三角形的對(duì)應(yīng)邊相等的性質(zhì)。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知∠MAN,AC平分∠MAN。

⑴在圖1中,若∠MAN=120°,∠ABC=∠ADC=90°求證:AB+AD=AC;
⑵在圖2中,若∠MAN=120°,∠ABC+∠ADC=180°,則⑴中的結(jié)論是否仍然成立?若成立,請(qǐng)給出證明;若不成立,請(qǐng)說(shuō)明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

以下各組數(shù)為邊長(zhǎng)的三角形中,能組成直角三角形的是(  。
A.1,2,3B.2,3,4C.4,5,6D.5,12,13

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知一個(gè)等腰三角形兩內(nèi)角的度數(shù)之比為,則這個(gè)等腰三角形頂角的度數(shù)為(   )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖所示,已知△ABC和△DCE均是等邊三角形,點(diǎn)B、C、E在同一條直線上,AE與BD交于點(diǎn)O,AE與CD交于點(diǎn)G,AC與BD交于點(diǎn)F,連接OC、FG,則下列結(jié)論:
①AE=BD;②AG=BF;③FG∥BE;④∠BOC=∠EOC,
其中正確的結(jié)論的個(gè)數(shù)是(    )

A.1      B.2     C.3      D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,∠B=40°,∠C=80°,AD是∠BAC的平分線,∠ADC=           °.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在Rt△ABC中,AC=3cm,AB=5cm,四邊形CFDE為矩形,其中CF、CE在兩直角邊上.

(1)求BC的長(zhǎng)度.
(2)設(shè)矩形的一邊CF=xcm.當(dāng)矩形ECFD是3㎝2,求矩形的長(zhǎng)和寬是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,△ABC中,AB=AC,∠A=,則B=(     )
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,是一株美麗的勾股樹(shù),其中所有的四邊形都是正方形,所有的三角形都是直角三角形.若正方形A、B、C、D的邊長(zhǎng)分別是3、5、2、3,則最大正方形E的面積是(    )

A.13            B.47            C. 26            D.94

查看答案和解析>>

同步練習(xí)冊(cè)答案