【題目】如圖,在△ABC中,∠C=90°.

(1)尺規(guī)作圖:作AB邊上的垂直平分線DE,交AC于點(diǎn)D,交AB于點(diǎn)E.(保留作圖痕跡,不要求寫作法和證明);

(2)(1)的條件下,連接BD,當(dāng)BC=5cm,AB=13cm時,求△BCD的周長.

【答案】(1)見解析;(2)17cm.

【解析】

(1)作線段AB的垂直平分線即可;
(2)先根據(jù)勾股定理計算出AC=4,再利用線段垂直平分線的性質(zhì)得到DA=DB,則可把BCD的周長轉(zhuǎn)為ACBC的和,從而達(dá)到解決問題的目的.

(1)如圖;

(2)在RtABC中,∵AB=13,BC=5,

AC=

DEAB的中垂線,

DA=DB,

∴△BCD的周長=BC+BD+CD=BC+AD+CD=BC+AC=5+12=17(cm).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠A=90°,AB=AC,ABC的平分線BDAC于點(diǎn)D,CEBD,交BD的延長線于點(diǎn)E,若BD=10,則CE=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC中,ABC=90°,AB=BC,過ABC的頂點(diǎn)B作直線,且點(diǎn)A的距離為2,點(diǎn)C的距離為3,則AC的長是(

A. B. C. D. 5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)求證:到線段兩端距離相等的點(diǎn)在線段的垂直平分線上.(要求:畫出圖形,寫出已知,求證和證明過程)

2)用(1)中的結(jié)論解決:如圖,ABC中,A=30°,C=90°,BE平分ABC 求證:點(diǎn)E在線段AB的垂直平分線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形ABCD的兩條對稱軸為坐標(biāo)軸,點(diǎn)A的坐標(biāo)為(2,1).一張透明紙上畫有一個點(diǎn)和一條拋物線,平移透明紙,這個點(diǎn)與點(diǎn)A重合,此時拋物線的函數(shù)表達(dá)式為y=x2 , 再次平移透明紙,使這個點(diǎn)與點(diǎn)C重合,則該拋物線的函數(shù)表達(dá)式變?yōu)椋?)
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AD=2,AB=3,過點(diǎn)A,C作相距為2的平行線段AE,CF,分別交CD,AB于點(diǎn)E,F(xiàn),則DE的長是( )

A.
B.
C.1
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+2過點(diǎn)A(﹣2,0),B(2,2),與y軸交于點(diǎn)C.

(1)求拋物線y=ax2+bx+2的函數(shù)表達(dá)式;
(2)若點(diǎn)D在拋物線y=ax2+bx+2的對稱軸上,求△ACD的周長的最小值;
(3)在拋物線y=ax2+bx+2的對稱軸上是否存在點(diǎn)P,使△ACP是直角三角形?若存在直接寫出點(diǎn)P的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為平行四邊形ABCD邊AD上一點(diǎn),E、F分別為PB、PC的中點(diǎn),△PEF、△PDC、△PAB的面積分別為S、S1、S2 , 若S=2,則S1+S2=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面文字,然后回答問題.

大家知道是無理數(shù),而無理數(shù)是無限不循環(huán)小數(shù),所以的小數(shù)部分我們不可能全部寫出來,由于的整數(shù)部分是1,將 減去它的整數(shù)部分,差就是它的小數(shù)部分,因此的小數(shù)部分可用1表示.

由此我們得到一個真命題:如果x+y,其中x是整數(shù),且0y1,那么x1,y1

請解答下列問題:

1)如果a+b,其中a是整數(shù),且0b1,那么a   ,b   ;

2)如果﹣c+d,其中c是整數(shù),且0d1,那么c   ,d   ;

3)已知2+m+n,其中m是整數(shù),且0n1,求|mn|的值.

查看答案和解析>>

同步練習(xí)冊答案