如圖,⊙
的直徑
是
,過
點(diǎn)的直線
是⊙
的切線,
、
是⊙
上的兩點(diǎn),連接
、
、
和
.
(1)求證:
;
(2)若
是
的平分線,且
,求
的長.
(1)證明: ∵
是⊙
的直徑
∴
∵
切⊙
于點(diǎn)
∴
∴
∵
∴
.
(2) 如右圖,連接
,過點(diǎn)
作
于點(diǎn)
.
∵
平分
∴
∴弧
弧
∵
是⊙
的直徑
∴
又∵
∴
∵
∴
∵
∴
∴
.
(1)由AB為⊙O的直徑,得:∠ADB=90°,根據(jù)MN是⊙O的切線,可知:∠AMN=90°,根據(jù)同弧所對的圓周角相等,可知:∠ADC=∠ABC,從而證得:∠CBN=∠CDB;
(2)連接OD、OC,過點(diǎn)O作OE⊥CD于點(diǎn)E,根據(jù)圓周角定理,可求得∠BOC和∠DOB的度數(shù),故可知:∠COD的度數(shù),在等腰△OCD中,可將CD的長求出.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,
是
的直徑,
是
上的兩點(diǎn),且
(1)求證:
(2)若
將四邊形
分成面積相等的兩個(gè)三角形,試確定四邊形
的形狀.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:單選題
如圖,已知⊙
是以數(shù)軸的原點(diǎn)
為圓心,半徑為1的圓,
,點(diǎn)
在數(shù)軸上運(yùn)動(dòng),若過點(diǎn)
且與
平行的直線與⊙
有公共點(diǎn), 設(shè)
,則
的取值范圍是:
-1≤
≤1
≤
≤
0≤
≤
>
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知
為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,
的半徑為1,過
作直線
平行于
軸,點(diǎn)
在
上運(yùn)動(dòng).
(1)當(dāng)點(diǎn)
運(yùn)動(dòng)到圓上時(shí),求線段
的長.
(2)當(dāng)點(diǎn)
的坐標(biāo)為
時(shí),試判斷直線
與
的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:填空題
已知:如圖,邊長為
的正
內(nèi)有一邊長為
的內(nèi)接正
,則
的內(nèi)切圓半徑為
.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:單選題
已知平面內(nèi)兩圓的半徑分別為4和6,圓心距是2,則這兩個(gè)圓的位置關(guān)系是
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,
內(nèi)接于⊙O,
為⊙O的直徑,
,
,過點(diǎn)
作⊙O的切線與
的延長線交于點(diǎn)
,求
的長.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:單選題
如果點(diǎn)O為△ABC的外心,∠BOC=70°,那么∠BAC等于
A.35° | B.110° | C.145° | D.35°或145° |
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:填空題
外接圓半徑為
的正六邊形周長為
.
查看答案和解析>>