【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織了一次八年級(jí)350名學(xué)生參加的“漢字聽(tīng)寫”大賽,賽后發(fā)現(xiàn)所有參賽學(xué)生的成績(jī)均不低于50分.為了更好地了解本次大賽的成績(jī)分布情況,隨機(jī)抽取了其中若干名學(xué)生的成績(jī)作為樣本進(jìn)行整理,得到下列不完整的統(tǒng)計(jì)圖表:
成績(jī)x/分 | 頻數(shù) | 頻率 |
50≤x<60 | 2 | 0.04 |
60≤x<70 | 6 | 0.12 |
70≤x<80 | 9 | b |
80≤x<90 | a | 0.36 |
90≤x≤100 | 15 | 0.30 |
請(qǐng)根據(jù)所給信息,解答下列問(wèn)題:
(1)a= ,b= ;
(2)請(qǐng)補(bǔ)全頻數(shù)分布直方圖;
(3)這次比賽成績(jī)的中位數(shù)會(huì)落在 分?jǐn)?shù)段;
(4)若成績(jī)?cè)?/span>90分以上(包括90分)的為“優(yōu)”等,則該年級(jí)參加這次比賽的350名學(xué)生中成績(jī)“優(yōu)”等的約有多少人?
【答案】(1)a=18 ,b=0.18 ;(2)見(jiàn)解析;(3) 80≤x<90;(4)105人.
【解析】
(1)根據(jù)第一組的人數(shù)是2,對(duì)應(yīng)的頻率是0.04即可求得總?cè)藬?shù),然后根據(jù)頻率的公式即可求得;
(2)根據(jù)(1)即可補(bǔ)全直方圖;
(3)根據(jù)中位數(shù)的定義即可判斷;
(4)利用總?cè)藬?shù)乘以對(duì)應(yīng)的頻率即可求得.
解:(1)抽取的總?cè)藬?shù)是2÷0.04=50(人),
a=50×0.36=18,b==0.18;
故答案是:18,0.18;
(2)
;
(3)中位數(shù)會(huì)落80≤x<90段,故答案是:80≤x<90;
(4)該年級(jí)參加這次比賽的350名學(xué)生中成績(jī)“優(yōu)”等的人數(shù)約是:350×0.30=105(人).
答:約有105人.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=ax2﹣3ax+c的圖象與x軸交于點(diǎn)A、B,與y軸交于點(diǎn)C直線y=﹣x+4經(jīng)過(guò)點(diǎn)B、C.
(1)求拋物線的表達(dá)式;
(2)過(guò)點(diǎn)A的直線交拋物線于點(diǎn)M,交直線BC于點(diǎn)N.
①點(diǎn)N位于x軸上方時(shí),是否存在這樣的點(diǎn)M,使得AM:NM=5:3?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
②連接AC,當(dāng)直線AM與直線BC的夾角∠ANB等于∠ACB的2倍時(shí),請(qǐng)求出點(diǎn)M的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一輛汽車在某次行駛過(guò)程中,油箱中的剩余油量y(升)與行駛路程x(千米)之間是一次函數(shù)關(guān)系,其部分圖象如圖所示.
(1)求y關(guān)于x的函數(shù)關(guān)系式;(不需要寫定義域)
(2)已知當(dāng)油箱中的剩余油量為8升時(shí),該汽車會(huì)開(kāi)始提示加油,在此次行駛過(guò)程中,行駛了500千米時(shí),司機(jī)發(fā)現(xiàn)離前方最近的加油站有30千米的路程,在開(kāi)往該加油站的途中,汽車開(kāi)始提示加油,這時(shí)離加油站的路程是多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,∠C=60°,AD是⊙O的直徑,Q是AD延長(zhǎng)線上的一點(diǎn),且BQ=AB.
(1)求證:BQ是⊙O的切線;
(2)若AQ=6.
①求⊙O的半徑;
②P是劣弧AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作EF∥AB,EF分別交CA、CB的延長(zhǎng)線于E、F兩點(diǎn),連接OP,當(dāng)OP和AB之間是什么位置關(guān)系時(shí),線段EF取得最大值?判斷并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)三角形一條邊的平方等于另兩條邊的乘積,我們把這個(gè)三角形叫做比例三角形.
已知是比例三角形,,,請(qǐng)直接寫出所有滿足條件的AC的長(zhǎng);
如圖1,在四邊形ABCD中,,對(duì)角線BD平分,求證:是比例三角形.
如圖2,在的條件下,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,是ABC的外接圓,AB為直徑,∠BAC的平分線交于點(diǎn)D,過(guò)點(diǎn)D作DEAC分別交AC、AB的延長(zhǎng)線于點(diǎn)E、F.
(1)求證:EF是的切線;
(2)若AC=4,CE=2,求的長(zhǎng)度.(結(jié)果保留)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩車從A城出發(fā)勻速行駛至B城,在整個(gè)行駛過(guò)程中,甲、乙兩車離開(kāi)A城的距離y(千米)與甲車行駛時(shí)間x(小時(shí))之間的函數(shù)關(guān)系如圖所示,根據(jù)圖象提供的信息,解決下列問(wèn)題:
(1)A,B兩城相距 千米;
(2)分別求甲、乙兩車離開(kāi)A城的距離y與x的關(guān)系式.
(3)求乙車出發(fā)后幾小時(shí)追上甲車?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】問(wèn)題提出:
如圖,圖①是一張由三個(gè)邊長(zhǎng)為 1 的小正方形組成的“L”形紙片,圖②是一張 a× b 的方格紙(a× b的方格紙指邊長(zhǎng)分別為 a,b 的矩形,被分成 a× b個(gè)邊長(zhǎng)為 1 的小正方形,其中 a≥2 , b≥2,且 a,b 為正整數(shù)) .把圖①放置在圖②中,使它恰好蓋住圖②中的三個(gè)小正方形,共有多少種不同的放置方法?
問(wèn)題探究:
為探究規(guī)律,我們采用一般問(wèn)題特殊化的策略,先從最簡(jiǎn)單的情形入手,再逐次遞進(jìn),最后得出一般性的結(jié)論.
探究一:
把圖①放置在 2× 2的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有多少種不同的放置方法?
如圖③,對(duì)于 2×2的方格紙,要用圖①蓋住其中的三個(gè)小正方形,顯然有 4 種不同的放置方法.
探究二:
把圖①放置在 3×2的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有多少種不同的放置方法?
如圖④,在 3×2的方格紙中,共可以找到 2 個(gè)位置不同的 2 ×2方格,依據(jù)探究一的結(jié)論可知,把圖①放置在 3×2 的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有 2 ×4=8種
不同的放置方法.
探究三:
把圖①放置在 a ×2 的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有多少種不同的放置方法?
如圖⑤, 在 a ×2 的方格紙中,共可以找到______個(gè)位置不同的 2×2方格,依據(jù)探究一的結(jié)論可知,把圖①放置在 a× 2 的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有______種不同的放置方法.
探究四:
把圖①放置在 a ×3 的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有多少種不同的放置方法?
如圖⑥,在 a ×3 的方格紙中,共可以找到______個(gè)位置不同的 2×2方格,依據(jù)探究一的結(jié)論可知,把圖①放置在 a ×3 的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有_____種不同的放置方法.
……
問(wèn)題解決:
把圖①放置在 a ×b的方格紙中,使它恰好蓋住其中的三個(gè)小正方形,共有多少種不同的放置方法?(仿照前面的探究方法,寫出解答過(guò)程,不需畫圖.)
問(wèn)題拓展:
如圖,圖⑦是一個(gè)由 4 個(gè)棱長(zhǎng)為 1 的小立方體構(gòu)成的幾何體,圖⑧是一個(gè)長(zhǎng)、寬、高分別為 a,b ,c (a≥2 , b≥2 , c≥2 ,且 a,b,c 是正整數(shù))的長(zhǎng)方體,被分成了a×b×c個(gè)棱長(zhǎng)為 1 的小立方體.在圖⑧的不同位置共可以找到______個(gè)圖⑦這樣的幾何體.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線y=x+6與x、y軸分別交于點(diǎn)A,點(diǎn)B,雙曲線的解析式為
(1)求出線段AB的長(zhǎng)
(2)在雙曲線第四象限的分支上存在一點(diǎn)C,使得CB⊥AB,且CB=AB,求k的值;
(3)在(1)(2)的條件下,連接AC,點(diǎn)D為BC的中點(diǎn),過(guò)D作AC的垂線BF,交AC于B,交直線AB于F,連AD,若點(diǎn)P為射線AD上的一動(dòng)點(diǎn),連接PC、PF,當(dāng)點(diǎn)P在射線AD上運(yùn)動(dòng)時(shí),PF-PC的值是否發(fā)生改變?若改變,請(qǐng)求出其范圍;若不變,請(qǐng)證明并求出定值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com