【題目】如圖1,點O是彈力墻MN上一點,魔法棒從OM的位置開始繞點O向ON的位置順時針旋轉(zhuǎn),當(dāng)轉(zhuǎn)到ON位置時,則從ON位置彈回,繼續(xù)向OM位置旋轉(zhuǎn);當(dāng)轉(zhuǎn)到OM位置時,再從OM的位置彈回,繼續(xù)轉(zhuǎn)向ON位置,…,如此反復(fù).按照這種方式將魔法棒進(jìn)行如下步驟的旋轉(zhuǎn):第1步,從OA0(OA0在OM上)開始旋轉(zhuǎn)α至OA1;第2步,從OA1開始繼續(xù)旋轉(zhuǎn)2α至OA2;第3步,從OA2開始繼續(xù)旋轉(zhuǎn)3α至OA3….

例如:當(dāng)α=30°時,OA1 , OA2 , OA3 , OA4的位置如圖2所示,其中OA3恰好落在ON上,∠A3OA4=120°;
當(dāng)α=20°時,OA1 , OA2 , OA3 , OA4 , OA3的位置如圖3所示,
其中第4步旋轉(zhuǎn)到ON后彈回,即∠A3ON+∠NOA4=80°,而OA3恰好與OA2重合.

解決如下問題:
(1)若α=35°,在圖4中借助量角器畫出OA2 , OA3 , 其中∠A3OA2的度數(shù)是;
(2)若α<30°,且OA4所在的射線平分∠A2OA3 , 在如圖5中畫出OA1 , OA2 , OA3 , OA4并求出α的值;

(3)若α<36°,且∠A2OA4=20°,則對應(yīng)的α值是
(4)(選做題)當(dāng)OAi所在的射線是∠AiOAk(i,j,k是正整數(shù),且OAj與OAk不重合)的平分線時,旋轉(zhuǎn)停止,請?zhí)骄浚涸噯枌τ谌我饨铅粒é恋亩葦?shù)為正整數(shù),且α=180°),旋轉(zhuǎn)是否可以停止?寫出你的探究思路.

【答案】
(1)45°
(2)

解:如圖所示.

∵α<30°,

∴∠A0OA3<180°,4α<180°.

∵OA4平分∠A2OA3

∴2(180°﹣6α)+ =4α,解得:


(3) , ,
(4)

解:對于角α=120°不能停止.理由如下:

無論a為多少度,旋轉(zhuǎn)過若干次后,一定會出現(xiàn)OAi是∠AiOAK是的角平分線,所以旋轉(zhuǎn)會停止.

但特殊的,當(dāng)a為120°時,第一次旋轉(zhuǎn)120°,∠MOA1=120°,第二次旋轉(zhuǎn)240°時,與OM重合,第三次旋轉(zhuǎn)360°,又與OM重合,第四次旋轉(zhuǎn)480°時,又與OA1重合,…依此類推,旋轉(zhuǎn)的終邊只會出現(xiàn)“與OM重合”或“與OA1重合”兩種情況,不會出第三條射線,所以不會出現(xiàn)OAi是∠AiOAK是的角平分線這種情況,旋轉(zhuǎn)不會停止


【解析】解:(1)解:如圖所示.a(chǎn)φ=45°,

【考點精析】本題主要考查了角的運(yùn)算的相關(guān)知識點,需要掌握角之間可以進(jìn)行加減運(yùn)算;一個角可以用其他角的和或差來表示才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:2x-3(2x-3)=x+4;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,點D從點C出發(fā)沿CA方向以4cm/s的速度向點A勻速運(yùn)動,同時點E從點A出發(fā)沿AB方向以2cm/s的速度向點B勻速運(yùn)動,當(dāng)其中一個點到達(dá)終點時,另一個點也隨之停止運(yùn)動.設(shè)點D、E運(yùn)動的時間是t秒(0<t≤15).過點D作DF⊥BC于點F,連接DE,EF.

(1)求證:AE=DF;
(2)四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值,如果不能,說明理由;
(3)當(dāng)t為何值時,△DEF為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】和直線l距離為8 cm的直線有______條.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】列方程解應(yīng)用題:

為了豐富社會實踐活動,引導(dǎo)學(xué)生科學(xué)探究,學(xué)校組織七年級同學(xué)走進(jìn)中國科技館,親近科學(xué),感受科技魅力.來到科技館大廳,同學(xué)們就被大廳里會“跳舞”的“小球矩陣”吸引住了(如圖1).白色小球全部由計算機(jī)精準(zhǔn)控制,每一只小球可以“懸浮”在大廳上空的不同位置,演繹著曲線、曲面、平面、文字和三維圖案等各種動態(tài)造型.
已知每個小球分別由獨(dú)立的電機(jī)控制.圖2,圖3分別是9個小球可構(gòu)成的兩個造型,在每個造型中,相鄰小球的高度差均為a.為了使小球從造型一(如圖2)變到造型二(如圖3),控制電機(jī)使造型一中的②,③,④,⑥,⑦,⑧號小球同時運(yùn)動,②,③,④號小球向下運(yùn)動,運(yùn)動速度均為3米/秒;⑥,⑦,⑧號小球向上運(yùn)動,運(yùn)動速度均為2米/秒,當(dāng)每個小球到達(dá)造型二的相應(yīng)位置時就停止運(yùn)動.已知⑦號小球比②號小球晚 秒到達(dá)相應(yīng)位置,問②號小球運(yùn)動了多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:x 2 -(x+2)(2-x)-2(x-5)2 ,其中x=3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:|2|(x4)0_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若已知|a+2|+|b﹣3|+|c﹣4|=0,則式子a+2b+3c的值為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,E是直線AB,CD內(nèi)部一點,AB∥CD,連接EA,ED.

(1)探究猜想:
①若∠A=20°,∠D=40°,則∠AED=
②猜想圖①中∠AED,∠EAB,∠EDC的關(guān)系,并用兩種不同的方法證明你的結(jié)論.
(2)拓展應(yīng)用:
如圖②,射線FE與l1 , l2交于分別交于點E、F,AB∥CD,a,b,c,d分別是被射線FE隔開的4個區(qū)域(不含邊界,其中區(qū)域a,b位于直線AB上方,P是位于以上四個區(qū)域上的點,猜想:∠PEB,∠PFC,∠EPF的關(guān)系(任寫出兩種,可直接寫答案).

查看答案和解析>>

同步練習(xí)冊答案