【題目】如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結DC并延長至E,使得CE=CD,連結BE,BC.
(1)求拋物線的解析式;
(2)用含m的代數(shù)式表示點E的坐標,并求出點E縱坐標的范圍;
(3)求△BCE的面積最大值.
【答案】(1)y=﹣x2+2x+3.(2)2≤Ey<6.(3)當m=1.5時,S△BCE有最大值,S△BCE的最大值=.
【解析】
(1) 1)把A、B兩點代入拋物線解析式即可;(2)設,利用求線段中點的公式列出關于m的方程組,再利用0<m<3即可求解;(3) 連結BD,過點D作x軸的垂線交BC于點H,由,設出點D的坐標,進而求出點H的坐標,利用三角形的面積公式求出,再利用公式求二次函數(shù)的最值即可.
(1)∵拋物線 過點A(1,0)和B(3,0)
(2)∵
∴點C為線段DE中點
設點E(a,b)
∵0<m<3,
∴當m=1時,縱坐標最小值為2
當m=3時,最大值為6
∴點E縱坐標的范圍為
(3)連結BD,過點D作x軸的垂線交BC于點H
∵CE=CD
∴H(m,-m+3)
∴
當m=1.5時,
.
科目:初中數(shù)學 來源: 題型:
【題目】制造廠的某車間生產(chǎn)圓形鐵片和長方形鐵片,如圖,兩個圓形鐵片和一個長方形鐵片可以制造成一個油桶.已知該車間有工人42人,每個工人平均每小時可以生產(chǎn)圓形鐵片120片或者長方形鐵片80片.問安排生產(chǎn)圓形鐵片和長方形鐵片的工人各為多少人時,才能使生產(chǎn)的鐵片恰好配套?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“*”是新規(guī)定的這樣一種運算法則:a*b=a2+2ab,比如3*(﹣2)=32+2×3×(﹣2)=﹣3
(1)試求2*(﹣3)的值;
(2)若2*x=2,求x的值;
(3)若(﹣2)*(1*x)=x+9,求x的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校開展了形式多樣的“陽光體育運動”活動,小李對某班同學參加鍛煉的情況進行了統(tǒng)計,并繪制了下面的圖1 和圖2,并且“乒乓球”對應的∠AOC=108°.
(1)求該班級的學生人數(shù);
(2)在圖1中將“乒乓球”和“足球”項目的圖形補充完整;
(3)在圖2中求∠AOD的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣2的對稱軸是直線x=1,與x軸交于A,B兩點,與y軸交于點C,點A的坐標為(﹣2,0),點P為拋物線上的一個動點,過點P作PD⊥x軸于點D,交直線BC于點E.
(1)求拋物線解析式;
(2)若點P在第一象限內,當OD=4PE時,求四邊形POBE的面積;
(3)在(2)的條件下,若點M為直線BC上一點,點N為平面直角坐標系內一點,是否存在這樣的點M和點N,使得以點B,D,M,N為頂點的四邊形是菱形?若存在上,直接寫出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,在平面直角坐標系中,A(﹣3,﹣4),B(0,﹣2).
(1)△OAB繞O點旋轉180°得到△OA1B1,請畫出△OA1B1,并寫出A1,B1的坐標;
(2)判斷以A,B,A1,B1為頂點的四邊形的形狀,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】螞蟻從點O出發(fā),在一條直線上來回爬行.假定向右爬行的路程記為正數(shù),向左爬行的路程記為負數(shù),則爬過的各段路程依次記為(單位:cm):+5,-3,+10,-8,-6,+12,-10.
(1)螞蟻最后是否回到出發(fā)點O?
(2)螞蟻離開出發(fā)點O最遠是多少?
(3)在爬行過程中,如果每爬行1獎勵一粒糖,那么螞蟻一共得到多少粒糖?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如同,△ABC內接于⊙O,且半徑OC⊥AB,點D在半徑OB的延長線上,且∠A=∠BCD=30°,AC=2,則由 ,線段CD和線段BD所圍成圖形的陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l:y=kx+b(k<0)與函數(shù)y= (x>0)的圖象相交于A、C兩點,與x軸相交于T點,過A、C兩點作x軸的垂線,垂足分別為B、D,過A、C兩點作y軸的垂線,垂足分別為E、F;直線AE與CD相交于點P,連接DE,設A、C兩點的坐標分別為(a, )、(c, ),其中a>c>0.
(1)如圖①,求證:∠EDP=∠ACP;
(2)如圖②,若A、D、E、C四點在同一圓上,求k的值;
(3)如圖③,已知c=1,且點P在直線BF上,試問:在線段AT上是否存在點M,使得OM⊥AM?請求出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com