【題目】如圖,在Rt△ABC中,∠C=90°,O是AB上一點,⊙O與BC相切于點E,交AB于點F,連接AE,若AF=2BF,則∠CAE的度數(shù)是 .
【答案】30°
【解析】解:連接OE、EF,
∵⊙O與BC相切于點E,
∴OE⊥BC,
∵AF是直徑,
∴∠AEF=90°,
∵OA=OF= AF,AF=2BF,
∴OF=BF,
∴OE=OF=EF,
∴∠OEF=60°,
∴∠AEO=90°﹣60°=30°,
∵AC⊥BC,OE⊥BC,
∴OE∥AC,
∴∠CAE=∠AEO=30°,
所以答案是30°.
【考點精析】認(rèn)真審題,首先需要了解平行線的判定與性質(zhì)(由角的相等或互補(數(shù)量關(guān)系)的條件,得到兩條直線平行(位置關(guān)系)這是平行線的判定;由平行線(位置關(guān)系)得到有關(guān)角相等或互補(數(shù)量關(guān)系)的結(jié)論是平行線的性質(zhì)),還要掌握圓周角定理(頂點在圓心上的角叫做圓心角;頂點在圓周上,且它的兩邊分別與圓有另一個交點的角叫做圓周角;一條弧所對的圓周角等于它所對的圓心角的一半)的相關(guān)知識才是答題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一架飛機由A向B沿水平直線方向飛行,在航線AB的正下方有兩個山頭C、D.飛機在A處時,測得山頭C、D在飛機的前方,俯角分別為60°和30°.飛機飛行了6千米到B處時,往后測得山頭C的俯角為30°,而山頭D恰好在飛機的正下方.求山頭C、D之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知方程的兩個解是和
(1)求、的值;
(2)用含有的代數(shù)式表示;
(3)若是不小于的負(fù)數(shù),求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將一副直角三角板按如圖1 擺放在直線AD 上(直角三角板OBC 和直角三角板MON,∠OBC=90°,∠BOC=45°,∠MON=90°,∠MNO=30°),保持三角板OBC 不動,將三角板MON 繞點O 以每秒8°的速度順時針方向旋轉(zhuǎn)t 秒.
(1)如圖2,當(dāng)t= 秒時,OM 平分∠AOC,此時∠NOC﹣∠AOM= ;
(2)繼續(xù)旋轉(zhuǎn)三角板MON,如圖3,使得OM、ON 同時在直線OC 的右側(cè),猜想∠NOC與∠AOM 有怎樣的數(shù)量關(guān)系?并說明理由(數(shù)量關(guān)系中不能含t);
(3)直線AD 的位置不變,若在三角板MON 開始順時針旋轉(zhuǎn)的同時,另一個三角板OBC也繞點O 以每秒2°的速度順時針旋轉(zhuǎn),當(dāng)OM 旋轉(zhuǎn)至射線OD 上時,兩個三角板同時停止運動.
①當(dāng)t= 秒時,∠MOC=15°;
②請直接寫出在旋轉(zhuǎn)過程中,∠NOC 與∠AOM 的數(shù)量關(guān)系(數(shù)量關(guān)系中不能含t).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△AOB中,∠O=90°,AO=8cm,BO=6cm,點C從A點出發(fā),在邊AO上以4cm/s的速度向O點運動,與此同時,點D從點B出發(fā),在邊BO上以3cm/s的速度向O點運動,過OC的中點E作CD的垂線EF,則當(dāng)點C運動了 s時,以C點為圓心,2cm為半徑的圓與直線EF相切.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=60°,內(nèi)切圓O與邊AB、BC、CA分別相切于點D、E、F,則∠DEF的度數(shù)為°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】七年級學(xué)生小聰和小明完成了數(shù)學(xué)實驗《鐘面上的數(shù)學(xué)》之后,自制了一個模擬鐘面,如圖所示,O為模擬鐘面圓心,M、O、N在一條直線上,指針OA、OB分別從OM、ON出發(fā)繞點O轉(zhuǎn)動,OA運動速度為每秒15°,OB運動速度為每秒5°,當(dāng)一根指針與起始位置重合時,運動停止,設(shè)轉(zhuǎn)動的時間為t秒,請你試著解決他們提出的下列問題:
(1)若OA順時針轉(zhuǎn)動,OB逆時針轉(zhuǎn)動,t= 秒時,OA與OB第一次重合;
(2)若它們同時順時針轉(zhuǎn)動,
①當(dāng) t=2秒時,∠AOB= °;
②當(dāng)t為何值時,OA與OB第一次重合?
③當(dāng)t為何值時,∠AOB=30°?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC于點D,AE平分∠BAC,∠B=70°,∠C=30°.求:
(1)∠BAE的度數(shù);
(2)∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀以下內(nèi)容:
已知實數(shù)m,n滿足m+n=5,且求k的值,
三位同學(xué)分別提出了以下三種不同的解題思路:
甲同學(xué):先解關(guān)于m,n的方程組,再求k的值、
乙同學(xué):將原方程組中的兩個方程相加,再求k的值
丙同學(xué):先解方程組,再求k的值
(1)試選擇其中一名同學(xué)的思路,解答此題
(2)試說明在關(guān)于x、y的方程組中,不論a取什么實數(shù),x+y的值始終不變。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com