【題目】如圖,在ABCD中,AD=2AB,F(xiàn)是AD的中點(diǎn),作CE⊥AB,垂足E在線段AB上,連接EF、CF,則下列結(jié)論:(1)∠DCF=∠BCD,(2)EF=CF;(3)S△BEC=2S△CEF;(4)∠DFE=3∠AEF,其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
【答案】C
【解析】解:(1)∵F是AD的中點(diǎn),
∴AF=FD,
∵在ABCD中,AD=2AB,
∴AF=FD=CD,
∴∠DFC=∠DCF,
∵AD∥BC,
∴∠DFC=∠FCB,
∴∠DCF=∠BCF,
∴∠DCF=∠BCD,故正確;
(2)延長(zhǎng)EF,交CD延長(zhǎng)線于M,
∵四邊形ABCD是平行四邊形,
∴AB∥CD,
∴∠A=∠MDF,
∵F為AD中點(diǎn),
∴AF=FD,
在△AEF和△DFM中,
,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,
∴∠AEC=90°,
∴∠AEC=∠ECD=90°,
∵FM=EF,
∴FC=FM,故正確;
(3)∵EF=FM,
∴S△EFC=S△CFM ,
∵M(jìn)C>BE,
∴S△BEC<2S△EFC
故S△BEC=2S△CEF錯(cuò)誤;
(4)設(shè)∠FEC=x,則∠FCE=x,
∴∠DCF=∠DFC=90°﹣x,
∴∠EFC=180°﹣2x,
∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,
∵∠AEF=90°﹣x,
∴∠DFE=3∠AEF,故正確,
故選:C.
利用平行四邊形的性質(zhì):平行四邊形的對(duì)邊相等且平行,再由全等三角形的判定得出△AEF≌△DMF(ASA),利用全等三角形的性質(zhì)得出對(duì)應(yīng)線段之間關(guān)系進(jìn)而得出答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,E、F、G、H分別為AB、BC、CD、AD的中點(diǎn),AF與EH交于點(diǎn)M,F(xiàn)G與CH交于點(diǎn)N.
(1)求證:四邊形MFNH為平行四邊形;
(2)求證:△AMH≌△CNF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】觀察下列關(guān)于a的單項(xiàng)式,探究其規(guī)律:a,3a2,5a3,7a4,9a5,….按照上述規(guī)律,第2019個(gè)單項(xiàng)式是( )
A. 2019a2019B. 4039a2019C. 4038a2019D. 4037a2019
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,點(diǎn)E在AD上,EC平分∠BED.
(1)試判斷△BEC是否為等腰三角形,請(qǐng)說(shuō)明理由?
(2)若AB=1,∠ABE=45°,求BC的長(zhǎng);
(3)在原圖中畫(huà)△FCE,使它與△BEC關(guān)于CE的中點(diǎn)O成中心對(duì)稱(chēng),此時(shí)四邊形BCFE是什么特殊平行四邊形,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平行四邊形ABCD和矩形ABEF中,AC與DF相交于點(diǎn)G.
(1) 試說(shuō)明DF=CE;
(2) 若AC=BF=DF,求∠ACE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用“<”符號(hào)連接下列各三角函數(shù)cos15°、cos30°、cos45°、cos60°、cos75°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)多邊形是正多邊形的條件是________________________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知EF∥GH,A、D為GH上的兩點(diǎn),M、B為EF上的兩點(diǎn),延長(zhǎng)AM于點(diǎn)C,AB平分∠DAC,直線DB平分∠FBC,若∠ACB=100°,則∠DBA的度數(shù)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 恩施州水資源豐富,全州水能資源理論存儲(chǔ)量為509萬(wàn)千瓦,可開(kāi)發(fā)量349.1萬(wàn)千瓦,將數(shù)509萬(wàn)用科學(xué)記數(shù)法表示為( 。
A.0.509×107B.5.09×106C.5.09×105D.5.09×102
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com