【題目】材料理解:如圖1點P,Q是標準體育場400m跑道上兩點,沿跑道從P到Q既可以逆時針,也可以順時針,我們把沿跑道從點P到點Q的順時針路程與逆時針路程的較小者叫P、Q兩點的最佳環(huán)距離.(如圖1,PQ順時針的路程為120m,逆時針的路程為280m,則PQ的最佳環(huán)距離為120m).
問題提出:一次校運動800m預決賽中,如圖2有甲、乙兩名運動員他們同時同地從點M處出發(fā),勻速跑步,他們之間的最佳環(huán)距離y(m)與乙用的時間x(s)之間的函數(shù)關系如圖所示;解決以下問題:
(1)a=_________,乙的速度為___________.
(2)求線段BC的解析式,并寫出自變量的范圍.
(3)若本次運動會是1000m預決賽,甲完成比賽后是否有可能比乙多跑一圈,計算說明.
【答案】200 ,
【解析】
(1)分析題意可知,甲、乙兩名運動員的最佳環(huán)距離的最大值為m,即設甲的速度為,乙的速度為,當甲到達終點時,他們之間的最佳環(huán)距離有最小值,即可求出甲,乙的速度.
(2)求出點C的坐標,根據(jù)待定系數(shù)法求一次函數(shù)解析式即可.
(3)求出甲跑完1000m所用的時間,即可求出乙跑的路程,即可判斷.
(1)分析題意可知,甲、乙兩名運動員的最佳環(huán)距離的最大值為m,即.設甲的速度為,乙的速度為,當甲到達終點時,他們之間的最佳環(huán)距離有最小值,則,,解得: 即乙的速度為
故答案為:,.
(2)則點C的坐標為
設函數(shù)解析式為,圖像經(jīng)過
解得 ,
(3)
乙:
有可能甲比乙多跑一圈.
科目:初中數(shù)學 來源: 題型:
【題目】已知關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根x1 , x2 .
(1)求m的取值范圍;
(2)當x12+x22=6x1x2時,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于點D,動點P從點A出發(fā)以每秒1厘米的速度在線段AD上向終點D運動.設動點運動時間為t秒.
(1)求AD的長;
(2)當△PDC的面積為15平方厘米時,求t的值;
(3)動點M從點C出發(fā)以每秒2厘米的速度在射線CB上運動.點M與點P同時出發(fā),且當點P運動到終點D時,點M也停止運動.是否存在t,使得S△PMD= S△ABC?若存在,請求出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,△ABC中,∠ACB=90°,AC=6cm,BC =8cm.點P從A點出發(fā),沿路徑向終點B運動,點Q從B點出發(fā),沿路徑向終點A運動.點P 和Q分別和的運動速度同時開始運動,兩點都要到相應的終點時才能停止運動,在某時刻,分別過點P和Q作PE⊥l于E,QF⊥l于F.則點P運動多少秒時,△PEC和△CFQ全等?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD中,∠A=∠C=90°,BE、DF分別是∠ABC、∠ADC的平分線.求證:
(1)、∠1+∠2=90°;(2)、BE∥DF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題原型:如圖①,在等腰直角三角形ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉90°得到線段BD,連結CD.過點D作△BCD的BC邊上的高DE,
易證△ABC≌△BDE,從而得到△BCD的面積為 .
初步探究:如圖②,在Rt△ABC中,∠ACB=90°,BC=a.將邊AB繞點B順時針旋轉90°得到線段BD,連結CD.用含a的代數(shù)式表示△BCD的面積,并說明理由.
簡單應用:如圖③,在等腰三角形ABC中,AB=AC,BC=a.將邊AB繞點B順時針旋轉90°得到線段BD,連結CD.直接寫出△BCD的面積.(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=4cm,BC=3cm,動點P從點A出發(fā),沿AB以1cm/s的速度向終點B勻速運動,同時點Q從點B出發(fā),沿B→C→D以1cm/s的速度向終點D勻速運動,當兩個點中有一個到達終點后,另一個點也隨之停止.連接PQ,設點P的運動時間為x(s),PQ2=y(cm2).
(1)當點Q在邊CD上,且PQ=3時,求x的值;
(2)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(3)直接寫出y隨x增大而增大時自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“文博會”期間,某公司展銷如圖所示的長方形工藝品,該工藝品長60cm,寬40cm,中間鑲有寬度相同的三條絲綢花邊.
(1)若絲綢花邊的面積為650cm2 , 求絲綢花邊的寬度;
(2)已知該工藝品的成本是40元/件,如果以單價100元/件銷售,那么每天可售出200件,另每天所需支付的各種費用2000元,根據(jù)銷售經(jīng)驗,如果將銷售單價降低1元,每天可多售出20件,同時,為了完成銷售任務,該公司每天至少要銷售800件,那么該公司應該把銷售單價定為多少元,才能使每天所獲銷售利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com